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ABSTRCT

A linearized model for the incompressible, inviscid,

irrotational, and unsteady flow about a thin airfoil with jet-flap

is formulated. The unsteady problems considered are the transient

and oscillatory deflection of the jet, plunging and pitching of

the airfoil, deflection of a "blown-flap," and also the penetration

of a sharp-edged gust. Justification is given for representation

of the jet, in the limit of high speed, small thickness, and constant

momentum-flux strength, by a vortex sheet, across which there is a

pressure difference proportional to the momentum-flux strength and

inversely proportional to the local radius of curvature of the jet.

The dynamic and kinematic interaction of the main stream with the

vortex sheets representing the airfoil and jet are shown to be

described by a coupled set of equations consisting of a third-order

partial differential equation and a singular integral equation,

along with appropriate boundary conditions. The properties of these

equations and their relationship to classical unsteady thin-airfoil

theory and steady jet-flap theory are discussed.

For -11 maaentum-flux strength, and for either small-time

after initiation of transient moion or high frequency of

oscillation, a transformation is made which leads to a simplified

form of the governing equations. All types of airfoil motion are

reduced in this approximation to a single set of equations, whose

solution is found in terms of the solution for jet deflection.
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Spence (1961B) attempted, by making a further appruximation,

a solution for small-time after instantaneous jet deflection. This

solution is found to be incorrect, and it in shown that no solution

can be found in the sense of this further approximation. Spence's

related solution for high-frequency osclllatory jet deflection is

also found to be incorrectp and a tentative, corrected solution is

proposed and discussed.

v



TANZ OFCOTM

INTR0WCTIQK I

CHAPTER 1: DNAMIC INTERCTION OF THE JET AnD MAIN
STREAM

1.1 Assumptions 7
1.2 Pressure Difference across the Jet 11
1 .3 Velocity Difference across the Jet in the Main

Stream 13
1.4 Velocity Induced in the Main Stream by the Jet 14
1.5 Limiting Case of Thin, High-Speed Jet 17

CHAPTER 2: DERIVATION OF THE BASIC EWUATICNB OF THE

LIARIZED UNSTEADY PROWM

2.1 Linearization of the Problem 23
2.2 Nature of the Motion and its Time Dependence 27
2.3 Dovnvash Conditions on the Airfoil and Jet 30
2.4 Identification of the Airfoil-Quasi-Steady Tems 40
2.5 Boundary Conditions at the Trailing Edge 42
2.6 Proof of Constancy of Circulation 43
2.7 Complete Equations for the System: Some Properties

of Them 48

CHAPTER 3: CALCULATIOC OF THE LIFT AND PITCHING-MOGMeT
COEFFICIETS

3.1 Calculation of the Lift Coefficient 59
3.2 Calculation of tha Pitching-Moment Coefficient 66

CHAPTER 4: EQUATICS FOR PAmmCLAR PBo
4.1 Jet-Deflection Problem 76
4.2 Problem of Airfoil in Plunging Motion 78
4.3 Problem of Airfoil in Pitching Motion 81
4.4 Problem of Blown Flap in Unsteady Motion 84
4.5 Problem of Airfoil Entering Sharp-Edged Gust 89

CHAPTER 5: LIMITING THEORIES OF THE UNSTEADY JE-FLAP
THEORY

5.1 Reduction of the Equations to the Classical
Unsteady-Airfoil Theory 95

5.2 Properties of the Classical Transient Solutions
5.3 Properties of the Classical Solutions for Steady-

State Oscillations 107
5.4 Reduction of the Equations to the Steady Jet-

Flap Theory 113

vi



CEO=Z 6: "BDhMME UXM NAT=~ OF T93 PROMME
TRAU1EOTZ(N Or =REB"UA!= TO

"BNUXLDW-L !=l" COO•:MITA .T 120

CAPT0 7: CEKQT.1 OF AiTTGD SB CUIO IN

7.1 Critique of Spenee's Solution -"o, the Jet-
Deflection Problem for 8=3 I Time 143

7.2 Further Critique of Smeal-Time Approach:
Jet-Deflection and Airfoil Motion Problems 160

7.3 Higb-Frequency Steady-state Oscillations:
Jet-Deflection and Airfoil Motion Problems 173

CHAPT 8: CaCSCtBICUS 184

IEER 187

APPENX A: EVALUATION OF CEI[AIN INT•PG•AI 191

vii



INTRODUCTI ON

The jet-flap principle has been extensively studied, both

experimentally and theoretically, in recent years since the pioneer-

ing work of Davidson (1956), Stratford (1956), malavard, Poisson-

Quinton and Jousserandot (1956), and Helmbold (1955). The principle

is briefly this: a thin, high-speed jet of air is ejected at or

near the trailing edge of an airfoil. Besides the direct-reaction

lift, which acts upon the internal jet ducting, additional lift is

obtained due to the effect of the curved jet on the airfoil external

pressure distribution. Furthermore, this modified external pressure

distribution accounts for recovery of very nearly the total thrust

of the jet, independent of jet deflection angle, the so-called

"thrust hypothesis," cf. Yen (1960). In the jet-flap, then,

has been found a promising means of integrating the lift and

.propulsion of an airfoil. A thorough review of the jet-flap

literature has been given recently by Korbacher and Sridhar (1960).

This integration has generated interest for application

not only to airplane wings for STCL performance, but also to airfoil

applications, e.g., helicopter-rotor blades, cf. Rtchards and Jones

(1956) and Dorand (1959), jet-engine compressor blading, cf. Clark

and Ordway (1959), Brocher (1961) and Paulon (1959), and very

recently to hydrofoils, cf., Ho (1961).

In view of the proposed applications of the jet-flap,

it would seem desirable to extend the analysis to unsteady problems.

1
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For if the jet-flap is used as a controlling device, e.g., for

cyclic control of helicopter-rotor blades, or for aircraft in slov

flight, the lift response to time-dependent jet deflections is of

great importance. In flutter stability calculations, the lift and

pitching moments of an oscillating jet-flapped airfoil are required.

The motivation for the study of unsteady jet-flapped airfoil theory

therefore arises from the sume considerations which motivated the

classical theory of unsteady airfoil motion.

To study the steady-state lifting properties of jet-flapped

airfoils, a model has been formulated independently by Malavard (1957),

Helmbold (1955) and Spence (1956) - which will be referred to

subsequently as I. In this model, the non-homogeneous flow of the

jet embedded in the main-stream is treated by representing the jet

by a vortex sheet, across which there is a pressure difference

proportional to the jet monment=n flux and inversely proportional

to the jet radius of curvature. This model has been shown by Spence

in I to be a good approximation When the jet velocity is very much

greater than the free-stream velocity, and when the jet is sufficiently

thin. With this as the model for the jet, the problem can be linearized

in typical thin-airfoil fashion. The linearized, two-dimensional

problem has been solved in a rheoelectric analogy by ialavard (1957),

numerically by Spence in I and Spence (1958), and finally

analytically by Spence (1961A) - to be referred to as II. The

corresponding problem for supercavitating hydrofoils has been

solved numerically, following I, by No (1961). Three-dimensional

theories have also been put forth, but are beyond the scope of this

present research.
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In the present research, the unsteady tvo-dimensional

lifting problem of a jet-flapped thin airfoil in incompressible

flow is formulated as an extension of the Malavard-Helmbold-Spence

model. The problems considered are those where (i) the airfoil

is performing some time-dependent motion normal to a mean, steady

position, or ii) the jet-deflection angle is time-dependent.

The jet momentum flux at its exit from the airfoil is assumed

constant, independent of time. Furthermore, the jet is assumed

to be fully developed in length prior to the onset of the unsteady

motion, i.e., the time-dependent motion is superimposed upon a

fully developed steady-state configuration.

In Chapter I the non-hcnogeneous flow problem of a jet

and mainstream of different total pressures is treated to find

a model for the dynamical interaction of the jet and mainstream.

The limit of a very thin, very high speed, constant-mcnentum-flux jet

is taken, and the consequent representation of the jet by a vortex

sheet is justified. This vortex sheet is characterized, exactly

as in the steady problem, by its support of a pressure difference

proportional to the jet momentum flux and inversely proportional

to the instantaneous local radius of curvature of the jet.

The resultant flow problem is linearized by the

assumptions of classical thin-airfoil theory in Chapter 2, the

airfoil also being represented by a vortex sheet with the appropriate

dcwnwash boundary condition. Consideration of the pressure

difference across the vortex sheet representing the jet leads

to a third-order partial differential equation relating the jet

vortex strength and the jet ordinate, or alternately, the same-
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order equation relating the jet vortex strength and the dovnwash

on the jet. The integral equation for the downvash on the airfoil

and jet, calculated by the Biot-Savart Law, or alternately considered,

the mixed boundary-value problem in the main-stream velocity

perturbations, is solved, resulting in a singular integral

equation relating the jet vortex strength and the downwash on the

jet. Boundary conditions on the jet ordinate and slope at the

trailing edge are specified. A proof due to Spence (1961B) - to

be referred to as III - is given that the potential difference

across the jet, at a given instant of time after initiation of the

unsteady motion, vanishes if a point sufficiently far downstream

is considered. This condition is shown to be stated alternately

in the form of the Wagner integral condition of the classical

theory of unsteady thin airfoils without jets. With this condition

the formulation is completed and some properties of the equations

of the problem are discussed.

Expressions for the lift and pitching-manent coefficients

are derived in Chapter 3 by relating the pressure distribution on

the airfoil to the vortex distribution representing the jet. These

expressions are canpared to their counterparts in the classical

unsteady thin-airfoil theory.

Detailed equations for the application of this model to

five fundamental problems of flat-plate airfoils are given in

Chapter 4, and are applicable for time-dependence of both transient

and steady-state oscillatory nature. These problems are:

i) An airfoil aligned with the free-stream direction and

having a time-dependent jet deflection angle at the trailing edge,

the "Jet-deflection" or Singular-blowing" problem.
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ii) An airfoil performing a purely plunging motion about

a mean position aligned with the free stream, the jet always re-

maining tangential to the trailing edge.

iii) An airfoil performing a pitching motion about some

axis in its plane, the jet being always tangential to the trailing

edge.

iv) An airfoil having time-dependent deflection of a

mechanical flap, over which a jet is blown from the hinge point and

leaves tangentially at the trailing edge, the so-called

"blown flap" or "Jet-augmented flap" problem.

v) Entrance of the airfoil, previously aligned with the

free stream, into a sharp-edged gust of constant upwash amplitude.

The jet remains tangential at the trailing edge, and the relative

speed between the airfoil and gust is arbitrary, but constant.

These problems, being linear, may be superimposed in any desired

fashion.

The reduction of the equations of Chapters 3 and 4 to the

case of airfoils without jets is discussed in Chapter 5. The

classical unsteady theory of thin-airfoils is then outlined,

bringing out certain features of the flow pattern, e.g., the

downwash distribution behind the airfoil, which have particular

importance in understanding the extension of this theory to the

jet-flap case. The steady limit of the equations is also found,

and Spence's steady-state solutions of I, (1958), and II discussed.

In Chapter 6, the "boundary-layer" nature of the equations

for small values of the jet momentum and small times after

initiation of transient motion or high-frequency steady-state

oscillations are investigated and the equations are given in terms
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of new "boundary-layer" coordinates. All the airfoil motion

problems - ii) to v) above - are shown to reduce to the same

equationsfor a first approximation in these coordinates. The

relation of the first approximation solution of this airfoil

motion problem to that of the jet-deflection problem is shown.

The further small-time, or high-frequency, approximation

of neglecting X- derivatives with respect to 4.- derivatives

is then examined closely in Chapter 7. Errors made in III in the

solution of the jet-deflection problem in terms of the jet ordinate

and jet vortex distribution for small times are poiated out.

Attempts to correct these errors by considering the downwash on the

jet and the jet vortex distribution as unknowns and a similar

approach to the problem of airfoil motion demonstrate the failure

of this approximation to give valid solutions. However, for

high-frequency steady-state oscillations, tentative solutions are

proposed for both the jet-deflection and airfoil-motion problems

to replace the erroneous ones given in III.

Chapter 8 briefly gives same conclusions of this research

and points out sane areas of, and approaches to, the problem of the

unsteady motion of jet-flapped airfoils where further work is

necessary. These are felt worthy of further research.



CHAPTER 1 - DYNA)IC INTEPACTICK ar THE JET AND MAIN STREAM

1.1 Assumptions

For the purposes of this section, no assumptions

about the airfoil need be made, except that it has a jet emerging

at tne trailing edge, and that it has some means of causing

unsteady motion of the jet. This means might be its own motion

or the motion of the jet ducting within the airfoil.

The jet is assumed to be fully developed in length,

i.e., it extends infinitely far downstream at any instant its

motion is being considered. The momentum flux of the jet at the

airfoil trailing edge is taken constant in time. The flow in the

jet is assumed inviscid, incompressible and irrotational.

It is also assumed that the local velocity, 'V , of

the jet is very much greater than the local velocity, W , of

the main stream in the vicinity of the jet. This velocity, U..

is composed of the undisturbed free-stream velocity at infinity

upstream, Uo , plus perturbations due to the interaction between

the two flows, including the velocity of downward translation of

the jet boundaries. For the practical jet-flap applications which

have been proposed, V >> I) , so the perturbations,

in particular those normal to U. , i.e., due to the downward

translation of the jet boundaries, must be very small conpared

to V . For V>) IAL , it follows that the instantaneous

streamlines of the flow in the jet at the boundaries between the jet

7,
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and main stream are substantially parallel to the instantaneous

shape of these boundaries. That is, with reference to Figure 1,

the jet velocities, 'V and Va. , at the boundaries are assumed

to be parallel to the boundaries. Furthermore, if the jet is

assumed thin, significant mean properties of the flow variables

at any position along the jet may be defined, and the streamlines

of the jet flow, in addition to being parallel to the boundaries

at the boundaries, will be all parallel to each other, hence

concentric at any position along the jet. This property leads to

a great simplification in the *tquations goveroing the problem, as

will be seen in the next section. To clarify this point, consider

the excluded case, UL.-O(4r) , due, say, to large downward

velocities of the jet boundaries. The instantaneous streamline

pattern, even for a thin jet, would intersect the jet boundaries at

an appreciable angle, as shown below. Such a geometry must be

excluded in order to formulate

a tractable model.

The restriction, V' » (A. , will be assumed

to be met in all types of airfoil and jet motions to be considered

in Section 2.2. In order to actually attempt solutions of these

problems in Chapter 7, discontinuous motions of the airfoil and

jet, as represented by the unit-step-function (equations 2-17),

will be considered. These motions will always be treated in the

sense that they are mathematical idealizations of continuous

motions with AV' >>
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The main-stream flow is also assumed inviscid, incoapressible,

and irrotational. The total pressure in the jet is, for d, >) U.,

greater than that in the main stream. This and the continuity of

static pressure t-cross each boundary between the flows require,

in the absence of viscous mixing (since both flows are assumed

inviscid), a vortex sheet at each boundary to satisfy the velocity

discontinuity there.

In the main stream, the integrated fo:.t of Euler's equation

is the so-called "unsteady Bernoulli equation," which is, here,

0 - i)

where • , , and U, are the local static pressure,

velocity potential and velocity, respectively; ?e is the (constant)

density. Po and Ue are the static pressure and velocity,

evaluated at the undisturbed conditions at infinity, hence

independent of time.

In the jet, similarly,

1z-z
(1-2)

vtere O , , and & ar as above; is the (constant)

density, in general different from ( .. and V. are the

static pressure and velocity evaluated at the undisturbed conditions

at Infinity downstream,* also independent of time. The total

* See Section 2.6 for remarks about this assumption of undisturbed

conditions in the jet at infinity downstream.
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pressures in the two flows, i.e., the right-hand sides of (I-I)

and (1-2), are in general different.

The condition of irrotationality in the jet can be

written

C + X = 0

r (1-3)

where r is the radius of curvature of the streamlines. This

immediately integrates to

r47 = Cn•anr

1.2 Pressure Difference Across the Jet

Consider an incremental element of jet as in Pigure 1,

described by its position, T , downstream from the trailing

edge at an instant of time, . The subscripts I and 2

refer to the upper and lower boundaries, respectively, of the jet.

Having assumed concentric streamlines within the jet, as discussed

in the preceding section, the element may be described further by

a radius of curvature, Rfs;+-) , to the centerline of the jet, a

thickness, C(S,4) , such that R(S,) .0 ( t are the

upper and lower boundaries, respectively, and an incremental angle,

A 9430 , (positive counter-clockwise) subtended by the

jet element. The pressure difference across the jet is, frm (1-2),

& 4I-a)

= -~ ~ ~ ~ i -L1Is* tals)
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By the arguments of Section I. 1, the radii of curvature

are normal to the streemlines inside the Jet, so they are equi-

potentials of the Jet flow. Therefore,

•,{,•- •{, 0,o

(1-6)

The mean velocity of the jet may be defined as

(1-7)

The irrotational condition within the jet, (I-4), becomes

(1-8)

and with (1-7), solving (1-8) for the velocity difference,

4r, t, o- 4-2. s,, gives

g(s,6) .

Substituting (1-6), (1-7), and (1-9) into (1-5) gives

the pressure difference across the jet as

p~ (A~ $.(sA =- ?v't%,•) g(•,r)

"is,•= ,'

( (sac)

(1-10)
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where the jet momentum flux, , is defined as

(1-11)

Therefore it has been found that the pressure difference

across the jet is, as in Spence's steady formulation of I, proportional

to the jet momentum flux and inversely proportional to the radius

of curvature of the jet. Here the pressure difference is a function

of time as well as position along the jet. The essential simplification

of the vanishing of the velocity potential difference across the jet

has resulted from the assumption of Section 1.1 that 'W» > WA

1.3 Velocity miLfference Across the Jet in the Main Stream.

By treating the flow in the main stream and relating

it to that in the jet by the condition of constant static pressure

across the boundaries. the wain-streem velocity difference across

the jet can be found. This velocity difference is required to

determine the strength of the vortex distribution necessary to

represent the effects of the jet on the main stream.

Considering again the jet element of Figure 1, equation

(1-1) evaluated in the main stream across the jet is

- ,f)+(t SAA - a( at1 s mlA

it(i-ia)



The mean velocity of the in stream across the jet

may be defined as

(1-13)

Substituting (1-13) into (1-12) and solving for

the velocity difference, LL (SA - 1L4$S A , gives

Ui1S~U)L,1X)r uN49 -

Since the static pressure is continuous across the

boundaries between the flows, the pressure difference found

considering the jet alone, (1-10),may be substituted into (1-14),

giving

a, (sk) - JIA) -

e* UIS) AN; .L~~) --a,-*)*)

(1-15)

This result differs significantly from the steady case

of I by the time derivative of the velocity-potential difference.

1.4 Velocity Induced in the Main Stream by the Jet

By considering the elemental vortices comprising the jet

boundaries, the velocity induced in the main stream by the jet

can be calculated using the Biot-Savart Law. The strength of these

votkes is related to the main-stream velocity at the jet boundaries.

For convenience, the complex velocity at a field point,

in the complex plane, due to the element of jet at 6 will

be treated. The coordinates are as follows:
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The velocity induced by the pair of elemental vortices, C 1' (SA)

and ,tP s is

(1-16)

Assuming 8 , since the jet is thin,

= A •.r, IS-A LA.. . + '•") 0 (+ .

(1-17)

This may be recognized as the increment of velocity induced

by a vortex of strength

(a-w8)

and a doublet, directed downstream, of strentch
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(1- 9)

both of which lie on the Jet center line, plus higher-order

singularities whose strergths are higher-order in •i$,&)

Define a vortex strength per unit length along the

center line, ez(r[SOd , and a doublet strength per unit length

along the center line, 4 s,4) , by

(1-20)

The strengths of the elemental Vortices /I.I.')

and P 4 S,) may be written in terms of the velocity they

induce in the main stream at the boundaries, namely,

d - + R)] AO ~) (1.21

Rewriting (1-18) and (1-19) using (1-20) and (1-21) gives

IT (sJ) RtS 64r'AGStA) U. 15,016A 60.+ ) + SIAII - 4

and

or&M L=] ' A

or
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and

"-3 [S, VMWL~ (.~ i~s -t1~~S~)

(1-22)

Substituting (1-13) and (1-15) into (1-22) gives

and

-X +j~& zrls.i) Our - I

(1-23)

The influence of the jet on the main stream can thus

be calculated by replacing the jet by vortex and doublet distributions

along the jet center line, their strengths being given by (1-23).

In order to make precise the neglect of the higher-order singularities

in (1-17), and to simplify the strengths of the singularities in

(1-23), the limiting case of a thin, high-speed jet will be treated

in the next section.

1.5 Limiting Case of Thin, High-Speed Jet

By order of magnitude considerations, the limiting case

of a thin, high-speed jet of constant mmentum flux, T. , will

be deduced.

The (constant) mass flux of the incaipressible jet is

defined as

m VI(SA)
(1 -24)
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so the jet momentum flux may be written using (1-1I) and (i-24J) as

(1-25)

Writing the subscript ( •o to refer to conditions at

infinity downstream where all the quantities are e.ssumed constant

in time, (1-25) may be written between some jet position, ,

and infinity as

(;t-a.I+ VCs- v.
Jo

--V.

(1-26)

where A V(ss) % Wst) - V. and similarly A U(S,4.) a UIS,) - U.

are the perturbations of ULS*0j and VIS, L) from the conditions

at infinity. It is important to note here that these perturbations

are not necessaril" small for the following analysis. They are

written this way for convenience.

Equations (1-1) and (1-2) may be written, between an

arbitrary field point in or near the Jet and the quiescent conditions

at infinity, as

S+ + eo o

(1-2,7)
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For an order-of-afgnitude analysis it is sufficient to

consider the pressure, t, , in each of these equations

as the same, say an average pressure in the neighborhood of the

jet. Eliminating •,- f this pair of equations

and solving for A IS, CS) , gives

1-2)

To estiate the order of the time derivatives of the

velocity potentials, write

and

In the main stream, a characteristic time-dependent A 4)15*)

would be the product of the characteristic perturbation speed 3 US,*.)

and a characteristic length, say the chord, C. Likewise a

characteristic time, A L , would be the chord, C , divided by

the free-stream speed, U . Thus,

-aI O or lC . ts = o. A U{s, o

(1-29)

In the jet, a similar analysis would use the jet speeds,

AVI$,4) and VI$,•4) , and the characteristic jet dimension,

-Thus,

SSA,) v) V.S V.i, L)

(1-30)
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Substituting (1-29) ad (1-30) into (i-2) gives

LV ' -) UOS ilsx) + 1 m +e c,(L)]

_____t)r qi VaEVkM [+(+)

(1-31)

Assuming that /e/ is O 1) , and that the terms

in brackets are of most 0(0) , (1-31) becomes

V.

or

Since in the mainstream ZTvisJi) is of 0 ({O ,*

_____ - _U0

V. (1-32)

* In the case of a jet or airfoil deflection having a unit-step-

"function time dependence, a - , and consequently A U{f,')

would have in the first instant the infinity of a Dirac delta function,

in clear violation of the assumption LU -a,& ,n O(UQ). However, as
discussed in Section 1-1, unit-step functions are considered because

of their mathematical convenience, and may be considered as the generali-

zation of a physically realistic deflection of finite rate, where

AU(sos * ONGo) This is the same consideration made in
classical linearized unsteady airfoil theory, where the infinities

introduced by the derivatives of the step function clearly violate

the small-perturbation assumption, unless understood in the above sense.
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Substituting (1-32) into (1-26) gives, finally,

(1.33)

In most practical jet-flap applications, the jet speed,

Vo , is very much greater than the free-stream speed, U. or

Consider now the limit as V$,) vanishes, such that the

jet monentum flux remains finite. In this limit VMAO) must

become infinite although the flow is still considered incompressible.

In detail, from (1-33),

(1.34)

and as '(SS) vanishes,

and,/ t

(1 .35)

The important relations from the earlier analysis may be

written in terms of this approximation, treating (s, 0)

as the sall parameter tending to zero. Equations (1-10), (1-15),

and (1-23) becane

- -,,:

(1-36)

(1-37)
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(1-39)

The jet vortex strength is zeroeth order in the jet thickness,

itsO , and becomes, to this order, equal to the main-stream

velocity difference across the jet. The doublet strength is of first

order in jet thickness and will thus be~neglected in the lifting

problem. Therefore the lifting problem is independent of thickness

in this approximation. Purthermore, the neglect of the higher-order

singularities in (1-17) is justified by this limiting analysis, as

they are higher-order in the jet thickness.

Therefore, the non-hcmogeneous flow problem of a thin,

high-speed jet embedded in the main stream has been approximated,

representing the jet by a vortex distribution along the jet center

line. This vortex distribution, whose strength is given by

(1-38), interacts dynamically with the main stream in the same

manner as the jet, In the limit of a vanishingly thin, constant-

mamentum- flux jet.



CHAPTER 2 - ERIVATIC OF TRE BASIC EqUATINS OF THE LINEUZED MOM

2.1 Linearization of the Problem

No treatment of the airfoil vas required in Chapter 1,

except indicatioi that it was the source of the jet and the cause

of its unsteady motion. In principle, then, a theory with no

restrictions on the airfoil or its motion could be developed using

the model of Chapter 1 as a representation of a thin, high-speed Jet-

flap, so long as none of the assumptions of Section 1 .1 were violated.

Practically, it is desirable to make the thin-airfoil assumptions

and linearize the problem.

Assume that the airfoil is thin and syimmetrical about

a mean camber line, and has chord, C . Choose *- and -

coordinates, so that IL is the free-stream direction and is

positive downwards, for convenience. If Y/%,t is the ordinate

of the mean camber line for 0 - ' e- , and is the

ordinate of the Jet center line for C - X k- , and if g/l, ,

0 4 %C C , is the thickness of the airfoil (the Jet having

been assumed of zero thickness in Chapter 1)., the problem may be

linearized by assuming P T 1

and pxm to be small quantities with respect to unity. The

velocities induced due to these quantities are then small compared

23
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to the free-stream velocity .-t infnityj, U. ,* and the squares

of these quantities may be neglected. Consistent with this, the

airfoil

'O .

and Jet are considered to lie along the 7.-- axis, regardless

of their actual shape, and the unsteady kinematic boundary condition

that they be instantaneously streamlined is to be satisfied on the

X- axis, too.

As is woe kno for linearized flow, ef. Robinson and

Laurmann (1956), pps. 129 and 170,, the thickness and lifting problems

decouple and may be considered separetely. For the lifting

problem, the airfoil my be represented by a vortex distribution, as

the jet has been. The above .nemtic boundary condition that the

airfoil and Je, surfaces be streamlines is satisfied if th.e dovnvash,

k*'[%,' k p, is given by the linearized convective derivative of the

airfoil or jet ordinate,

(2-1)

as given in Rlobi~nson and'Lauruam (1936), P. 3.

H lere, as In Bection 1.3, infinities Implied by the step-functLon

time variation nast be considored as the lAmt of finite-rate

processes vhich do not vlolate the -11perturation, appr'o.mation.
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Coe.s1 rtent with the linearization, the local mean main-stream

speed across the jet, 0 ISIA) given by (1-13), may be taken to

be Uo everyi1ere. The - and a- components of the

local stream velocity may be written as U9 + W%-,40 and

IJ•-? • &respectively, where u., (Ar are to denote

the velocity perturbations for the remander of this report. No

confusion with their previous usage should occur.

Define , of a quantity to mean the difference in

its value just below the %- axis from its value just above, i.e.,

W 
(2-2)

The coordinate S , denoting distance along the jet frao the

trailing edge linearizes to %- C

Te curvature of the jet is given geometrically by

L-_ =_ + (Wl;;ý Yl-A

which is, linearized,

(2-3)

If the jet-manentum-flux coefficient is defined as

(3--

(2-4i)

the pressure difference across the jet, (1-36), and the jet vortex

strength, (1-38), myr be written in linearized fore as
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(2-5)

and

(2-6)

where the subscript, C on the vortex strength has been

omtted for simplicity.

From the definition of the velocity potential, and the

strength of the vortex distribution in terms of the free-stream

velocity perturbation,

(2-7)

The Jet vortex strength, (2-6), written using (2-7), gives an

equation in the potential difference across the Jet. namely

(2-8)

Taking the linearized convective derivative of this and using (2-1)

gives

+kw ~ 2 V6' %VUS U oW -

C (2. e )o

(2-9)
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mfferentiating (2-8) vith respect to ' and usi•g (2-7)

gives

(2-10)

From (2-9) or (2-10), it also follows that

(2-11)

The unsteady Bernoulli equation, (1-1), evaluated across

the OX- axis is., vith (2-7),

0A401 I.,+ U. a= - MLA

(2-12)

if A P/I,,Q given by the analysis of the jet,(2-5), is

substituted directly into (2-12), (2-8) seem to follow immediately,

Just from the linearization of the problem. The analysis of Sections

1.3 to 1.5 is necessary, hovever, to Justify the representation of the

Jet by a vortex sheet as being a valid approximation to the Jet flow,

i.e., that the Jet thickness is really a higher-order effect for thin,

high- speed Jets,

_2.2 Nature of the Notion .and its Time Dependence

The unsteady motions to be treated are of the following

types:

i) The airfoil is fixed and the Jet deflection angle,

"t t :) , relative to the slope of the airfoil at the trailing



edge varies ti:me-dependentlj.. t'is motion is given by

(2-13)

where TO is the mshL aumhitude of the deflection. Ech

point on the jet boundary moves nozrally to the a- xis only.

ii) The airfoil is performing some usm&-awup.tude

time-dependent motion• about a mean position, e.g., plunging,,

pitching, or rotation of a mechanical flap vith the jet deflection

angle at the trailing edge fixed relative to the airfoil. Such

motion can be characterized by

(2-114.)

Each point on the airfoil and jet boundary moves normally to the

%- axis.

iii) The airfoil and jet deflection angle at the trailing

edge remain fixed and a sharp-edged gust asses over the airfoil

and jet from the leading edge. Such a gust can be represented by the

dowmvash distribution

ViWyi) F(i- )

where W11%) is the small emplitude and iJ./> is the

speed relative to the airfoil. Again the jet boundary moves nozamly

to the IL- axis only. Despite the vortex sheet required at the

edge of the gust, this problem has been treated in classical unsteady-

airfoil theory as if it were a potential flow with an imposed, WI%.t) ,

of. von Eirmin and Sears (1938) and Ml.es (1956).
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are assumed to be of a form such that in any case the dovnWash on

the airfoil =y be represented by a power series in % . Such

a power series is equivalent to the familiar Glauert Series for

the dovwnvash on the airfoilp Glauert (1913), hence there is little

loss of generality in the choice of functions which can be considered.

Two types of time dependence,, FRQ , are of

particular interest. First are the transient problems where

F/b40 PU A-W)

(2-16)

The function PM is any non-dimensional function of time,

and . W is the unit-step function, defined by

(2-17)

The fundamental transient problem is that of response to the unit-

step function, i.e., -a I , since the response to all

other may be found from it by Duhamel superposition. Second

are the cases of steady-state oscillations, where

(2-18)

The motion is assumed to have begun at 0 - , with W

being the circular frequency of the oscillations, and V (W) being

the daping factor. For A(Cw) 40 , the oscillations diverge

exponentially with time, but began with zero amplitude at 4-- at

and are thus meaningful for +4 0 The I&U& i0 , i.e.,
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exponentially damped, oscillation must be excluded sine they

arise from the physically unrealistic initial coltion" of

infinite amplitude at L• - • Icpe~entially damped

oscillations beginning at finite amplitude at 0 w O could be

treated as a transient problem, vith T e two .&(W) , O 0
For a consideration of these damping considerations in classical

unsteady-airfoil theory, see the paper by Luke and Dengler

(1951) and the subsequent notes by Van de Vooren (1952), Laitone

(1952), W. P. Jones (1952) and Dengler, Goland and Luke (1952).

2.3 Downwash Couditions on the Airfoil and Jet

The dovnwash due to the vortex distributions representing

both the airfoil and Jet may be found by using the Biot-Savart Law

for the velocity induced by an incremental vortex element, and

integrating over the distributions, giving

C

bi- -O ill f...0
0 i(2-19)

This is, in fact, two equations, one for 0 e.% •C. vhere the

first integral exists in the sejise of Cauchy's Principal Value, the

second for CA %- co where the second integral exists in the

same sense. Whereas (2-8) to (2-11) express the dynamic interaction

of the jet and main stream, (2-19) expresses a kinematic interaction.

The two equations (2-19) and equation (2-1I) ere three

equations in the four functions Ur72,t) , od- I• c

oU -1%. C. d. X'•.: ,lli I., ."

Alternately, combinations of Y/IL,*) and ¥rIt4j , •tj:j

and 441% v , or Y/,0 and L?4IZ,-O might
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be conaidered, also giving three equations in four unknown functions.

In the cases of practical interest# the airfoil shape, YIYA,• •O• .

and from (2-1) then, the dov ashwb ,, 0 A. "C , is prescribed,

and along with the boundary conditions to be discussed in Sections

2.5 and 2.6, the equations (2-19) and (2-11) are then three equations

in the reaining three unknovn functions.

The dovnvaah equatiors (2-19) may be inverted, using the

prescribed airfoil shape, YU-i, 0o..M. ca , in a vey to

mathematically decouple the airfoil vortex distribution, '(1,L) ,

O). rc , from the functions describing the jet. That is,

a form of the equations may be found where the jet ordinate or

dovnwas) and vortex distribution or potential difference may be

solved for independently of the airfoil vortex distribution. Upon

solving for the former, the latter may then be evaluated.

There are several alternate methods of inverting (2-19),

all of which have a similar mathematical basis, although the

individual techniques are different. Spence used a "null-transform"

technique ((cf. Section D12 of Heaslet and Lomax (1954) ) in I.

In II he used a generalization of a result first given by Carleman

(1922) for the inversion of a certain singular integral equation.

For the present Y--port, the technique put forth by Cheng and Rott

(1954) is used. This is based on the solution of the equivalent

mixed boundar1-value problem in the velocity perturbations.

The doamash equations (2-19) will not be considered

directly, but the corresponding mixed boundary-value problem in the

coaplex velocity function, M/,t= 6, 4.- iiOfllt), is treated.

In this form, boundary values are given in terms of UtlUO+,+)

and UT17,e+,t) on the alternate sepients of the
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%- axis corresponding to the airfoil, jet and the region

upstream of the leading edge. From the strength of the vortex

distribution representing the Jet, (2-7), and from the dovnwah

required on the airfoil, the boundarýyvalue problem here is as follovs:

%,o*,61) =0o,

(2-20)

where WI1,a t)) o 0 4.eC is known, but tA= , -

is still unlnwomo and leads to another integral equation after

inversion.

To solve this problem, the corresponding homogeneous

solution in the coulex velocity is found, i.e., for the problem

where

m II

Urm ) 0

(2-21)

This homogeneous solution, , say, is

constructed by considering the behavior required of the inhonogeneous

solution at the edge pointsp i.e.., the leading and trailing edges.,

• 0 and X. C. . Here the usual X-/&
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singularity is permitted at the leading edge I a 0 , while

at MC an (•._c-,/t singularity is not periutted

since the jet emerges here., preventing flow around the trailing

edge.

In the classical non-jet-flap case, flow around the

trailing edge is excluded by the Matta condition. With the jet-flap

a stronger condition is imposed, since the angle of deflection of

the jet relative to the slope of the airfoil at the trailing edge,

"t1) , nwm also be prescribed. Anticipating later results, it

is necessary to remark that exclusine of the I/square-root singularity

does not prevent a logarithmic singularity at the trailing edge.

Such a singularity is weaker and represents not flow completely

around the trailing edge, but only deflection of the flow by some

angle. This corresponds to a discontinuity in the downwash at the

trailing edge. In a similar fasbio logarithmic singulLrities on

the airfoil surface are permitted and will, in fact, result from

prescribed discontinuities in the dowinash. The classical example

of such a singularity is that at the kink of a bent flat plate,

first pointed out by Glauert (1927) - cf. also Spence (1958) -

in his representation of an airfoil with flap.

To make the condition at the trailing edge more precise,

write

"". (2-22)

Since no singularities stronger than I/square root are permitted

in the velocity on the airfoil, the circulation around the airfoil,

i.e., Av e is regular and since its time

derivative nust be also,
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(2-23)

From (2-22) and. (2-23).- therefore,

(2-24)

and using (2-8), therefore

'1f )1L,C-1'* 0)Y•

(2-25)

The homogeneous solution is, then, from Mheng and

Rott (19),

(2-26)

The cauqplex velocity function., F 1,£) say, which is

the quotient of the inho•ogeneous an.hcumogeneous solutions,

(2-27)

has the property that its imagnary part, i.e., its downvaah, is

known everywhere along the '- axis. Thus the problem of

finding F• ,J) is the so-called direct, or thickness problem

of thin-airfoil theory, whose solution can be written dovn ±uuediately

by considering the velocity induced by a source distribution whose

strength is twice the donuvash. Mhs technique vill become clearer

upon working through the problem.
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For referimce, write out the coiplex velocity

conponents of the three functions,

W04,02 Ulf 17&6r) 44 1")I~

(2-2B)

In order to remain on the same branch of the function 0,164IJ)

it is necessary to restrict 0-" . 7!.

For _aod)L0 z , and a&1? ve=7r,O ~aw r,,

from (2-26),

(2-29)

Fron (2-20), (2-27), (2-28), and (2-29)

(2-30)

and so the imaginary part of F1,x.,o* 8+ is

(2-31)

In a similar fashion, for 0z. y. _0+

and 41AA11-46.1 , , -TrI,/s 0 p fra. (2-19),

(2-32)

Fran (2-20)j, (2-27), (2-28)j, and (2-32),
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F 1,,ot.i) + •l.o..)÷S/,,,f •...,

(2-33)

and so the im@ginary part of F(1 I ,' is

(2-34)
Finu•lly for c.4. , ye a o a , and =0j•-,j g ,

o41lI.i 0 , frm (2-19),

(2-35)

From (2-20), (2-27), (2-8), )=d (2-35),

(2-36)

and so the imaginary part of o+ is

0 ,o,,;) 2- e-4,,,o

(2-3T)

Fro the three expressions (2-31), (2-34.), and (2-37), it

is seen that the imaginary part of F(ZO-,O+,r) , i~e.)Y2, V0

for -- Y4 o I 0 is known. By eq•ution (1) of Meng and Rott

(195), which is jus1t the velocity induced by a source distribution

of strength

•J" -•,+
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or using the definition of F~ or (247).,

(2-38)

vith (2-1), (2-19), (2-26), (2-24), (2-27), (2-31), and (2-37),

(2-39)

This gives the complex velocity, 41• ,4ý) everhe.re in the

field.

To get the desired inversion results, in addition to

recovering the boundary values, the limit 0 -- 0+ of equation (2-32)

must be taken on each segment of the %- axis. The results are

+Z7C

" (2-40)

(2-41)

fit

(2-42)



The boundary values, (2-2DI are apparent in (2-40O)- (2-42), and by

using (2-7) an (2-1), the duired inve-wion results are
C q % + Ik,~ O A.ii '

(2-43)'YL" ('°4(± (-d ,- .L S Lk1~

C. 4 XAG.O o
(2-44)

The integral equations. (2-19), for the downwash have been

inverted and the equations (2-43) and (2-44) are the resui The

airfoil vortex distribution V(A,* 0 A. )-4 , does not

appear in what are now the two governing equations of the problem.

The problem, now, is to solve (2-11) and (2-44) for the downwash on

the jet, Wl%,*) , and the jet vortex distribution, arI%,&; ,

both C - V-4 60 ,using the boundary conditions to be discussed

in Sections 2.5 and 2.6. Alternately Y/I&0*) and k1,+)

LAr)L~.+) and ,or Y/ALAI and A,4*11 may

be considered to be the unknown functions. The airfoil vortex

distribution, r%,0) , 0 1. 1.d..c. , may then be evaluated

frcm (2-43)0 as could the donwash upstream of the leading edge fromn

(2-40).

For future reference, equation (2-43) may be integrated

with respect to %. , giving, by (2-7), the potential difference

acwross the airfoil. Since there are no IL- velocity perturbations

on the y-- axis upstream of the airfoil leading edge, (2-20),,

(2-45)



39

so I.

(2-46)

To simplify this expression, interchange the order of integration.

This is permissible according to Section D12 of Heaslet and Lcnax

(1954), since the behavior of II•i•) at the trailing edge,

(2-22), and the assumption that UrIs,4r1 on the airfoil can be

represented by a power series in Oy eliminate any residual

singularities of the integration. This gives

(2-47)

Using the results of Appendix A, (A-48) and (A-49), the potential

difference across the airfoil is
C 

C 
+ 4 1I

2- C C.-Y& q

OPOt- 4WC.

(2-48)

In particular, if %w G-, (2-48) becomes the circulation around

the airfoil,

C.@M) Mi'~r) - 1 U)' ~r)s +J1 } 4~'4Ad-
0 C,

(2-49)
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2.4i Identification of the Ahirfod.1-Q~w,au-8t Tomns

The first term on the right-hand sides of (2-43), (2-44),

(2-49), and the first two tenms on the right-hand side of (2-48) wil

now be identified. A quasi-steady quantity is for the present purposes

defined " one dependent only on the instantaneous unsteady motion,

independent of the previous time history of the flow. Since the

terms in question are fanc'Irons only of the airfoil, motion, and are

independent of the Jet, tJW vill be referred to here as the airfoil-

quasi-steady terms. They ane calculated such that the instantaneous

time-dependent boundary condition that the airftol surface be a strema-

line is satisfied, but neglecting any effects due to shed vorticity

qr the jet. 2hese terms are results of the classical steady-state

solution for a thin airfoil with time-dependent downuh on the airfolI,

i.e.,, the mixed boundary-value problem treated in Section 2.3, with
U.(1.,o÷ 0 , -_ . , or

(2- 50)

Since the same requirements ar made on this solution at the

leading and tzailing edges (although thq6laasical Datta condition is

invoked at the trailing efge instead of the argment of POg 33),

solution follows the procedure of Section 2.3 directly. Zuyatlons (2-43)

and(2-U) with ,) , e-' %1%, are

then the .irfail-quasi-steady values.
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"hle aIrfo~l,-pau-steaW vortex Iistributica Is#

froi (2-43),

(2..5e)

Frm (2-e8). the airfoil-quiud-stead potential difference across

the airfoil is

0

and. the airfcdil-q~uaui-stea4 oirculatiam. Is thesm

Pali)= A 00(44)u 14jI

(2-53)

Tlhe airfail-quasm-steady 4duova behind. the alsfoUl

is,. frcu (2-44~)., . C.

0

(2-5)

Since the airfoil sad. gost s~e z assed. in Section 2.2 to 91e

power-series represmntations of the downwmsh an the airfolp It can

be shown that this domumimh in continuos at the trailing edge with

the sirfail-qamsi-stea d owmash ehInd. the airfoil. Sou paser series

my be written

wir4) Gh U- LXe

where Goat) Is the ,prepzate function of tism. Bndmala

(2-5.) dth tls, .,sin (A-33), .g,,s



(4-2
Ur I%, wA i i . 4 i-X 0

(2-)

S.nce problems vith the airfo.l shapep, 0 d, , e C.)

prescribed are to be considerejl, thes aIrf.L1-qupsI-stay quamtities,

W be calculated Idmiately In a given case.

2.5 Boundray Coaitionas the N

haere are' two boundary ceitions an the jet ordinate at

the t1iling edge of the airfoil, First., the jet must be conti•uos

vith the airfoiel there; i.e.,

(2-•)

Secondly, as mentioned in Sections 2.1 and 2.3, the angle of deflection

Of the jet rOlative to the Slope of the airf•l, at the t railin edge

my be Prescribed, viing., usin (2-13),

(2-59)

In tezus of the Iminush (25-) nad (2-59) my be

combined, using (2-1) to give the sile oad)lion
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and from (2-57),

U.,-/c+,Q) a ~ro 1C+,4,) + UC,L' FM•)

(2-6D)

Finally, these conditions can be expressed in terms of an

integral over the Jet vortex distribution or potential difference.

From (2-44), (2-54) and (2-60),

(2-61)

or, using (2-7),

ir

(2-69)

In the steady jet-flap analysis of I and II, the boundary condition

at the trailing edge can be expressed in exactly the form of (2-61)

and (2-62), less the time dependence. Spence has shown in I that this

condition can be satisfied if there is a lgoarithmic singularity in

the vortex distribution at the trailing edge, and his analytic

solution of II confirms this. These singularities have been discussed

in Section 2.3. If there is no Jet deflection, 're W 0

(2-61) implies that the vortex distribution is regular at the trailing

edge-

2.6 Pro of constancy of circulation

Since the problem is l1near, solutions for various boundary

conditions may be sperimposed. Therefore a transient problem,

e.g., one described by (2-13), (2-14), or (2-15) and (2-16), m be



considered independently of any other steady or unsteady configuration

the system of airfoil plus Jet night have, provided the assumption

of a jet fully established in length before initiation of the transient

motion is met. The airfoil and jet my then be assumed to consst of

a flat plate with an infinitely long jet tangent at the trailing

edge, both aligned with the free stream before initiation of the

motion. Then the cireplation around the following simply connected

contour is initially zero:

In the classical unsteady theory of airfoils without jets,

the flow about the airfoil is doubly connected. Therefore the circulation-

about a contour drawn around the airfoil is zero before initiation of

the transient motion and must remain zero for all times after the

motion has begun. This is a direct conclusion from Kelvin's Theorem,

cf. Sears (1954). In the jet-flap case, the simple connectivity

of the flov eliminates this argument. Instead, a proof of the

coustancy of circulation in the jet-flap case given by Spence in III

will be reproduced.

This proof is based on the physical property that sufficiently'

far downstream at a given instant of time after initiation of the

motion, the jet must return to its initial undisturbed position.

Moreover, its slope and curvature will also vanish; i.e.,



(2-63)

This property may be visualized in the f olloving way. If the

velocity, Vo , of the flow in the jet is much greater than the

velocity of the jet boundaries, as expressed by the dovnvash velocity,

4r/%,t-) , the jet will be continuous fran the trailing edge

to infinity downstream. If the reverse ineq:.ality held, the jet

might cease to be a continuous flow and break in same fashion. For

the continuous jet, the assumption of inviscid flow implies that the

jet is impermeable; hence a perticle of air above (or below) the

jet initially must always remain above (or below). If, then,

the jet were displaced from its 'Antial position at infinity downstreamz,

an infinite amount of work would have been done in a finite time

to move the infinite amount of air above and below the jet. The

condition that V. >> W"I7Q't is no restriction,

since in Section 1.5 the assumption of Vo >> U has been

made, and in Section 2.1 the small-perturbation assumption of

UoL has been made. Again, as in Sections 1.5

and 2. 1, it must be mentioned that although unit-step functions and

their derivatives may be treated, -they are considered as the limiting

cases of flows in which V. u> Ufr %,v1)

To find the circulation in the system at any time, i.e.,

the potential difference A4I%4) as .- ,o. , the

unsteady Bernoulli equation, (2-12), is solved for A•I%.6)

This solution is
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- IJaIp1t+ " d5 + Flx-u,•J). 'X>.,>u

vhere the motion is assumed to have been initiated at o 0 ,

and vhere there is no pressure difference across the %- axis

upstream of tha leading edge. F(v- Ue4) is an

arbitrary function of the integration, but since (2-61) must be valid

for all positive and negative •,- and 4• , the vanishing of

A0 or ,Y&for o and ALL d-o require FI(.-V*i)

to be zero, identically.

An alternate integration of (2-12), vhich is related to

(2-614) by the transformtidn + = t f is, since

FIz-Uoi) s o

(2-65)

For O-Ue ;P. , Vith the pressure difference across

the jet, (2-5), (2-614) beoms

S(* qf, ~ )J
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then

la 01'k) I U.Z4 u U~c. (ut) KI%, 6)

and for a fixed , by (2-63),

rf (2-66)

Wherefore the circulation in the system is zero. Note that the

limit is non-uniform with respect to + , since for longer times

it is necessary to go farther downstream to take the limit.

For a jet-flapped airfoil in unsteady motion, then, it is

no longer just a case of shedding vorticity into the wake at the

trailing edge in equal and opposite amounts to the changes in circu-

lation around the airfoil, as in the classical unsteady-airfoLl

theory. Bather, equal and opposite amounts of vorticity must be

shed from all points of the airfoil and jet, in such a way that the

total circulation in the system vanishes. BLrnbam's concept of

bound and shed vortices, cf. Cicala (194.1), is a good physical way

of considering the problem. The airfoil and jet are thought of as

being represented by bound vortex distributions whose strengths at a

point are eqal to E. ach of these bound vortices

sheds, as its strength varies, the iAount of vorticity necessary

to satisfy (2-12). This shed vorticity is convected downstream at

the free-stresm speed, U.



An alternate equation expressing the constancy o circulatiow"

may be found by considering (2-49) along vith (2-7) and (2-53), giving

Otl,/c-,•=41 -ZPu, ,a,.4 - 41010) +A01,4-44

(2-67)

With (2-66), then, since the potential difference must be continuous

at the trailing edge,

(2-6B)

expresses the constancy of circulation. This is recognized as the

Wagner (1925) integral condition of classical unsteady-airfoil theory.

The fom is Identical, but •1',J) here contains the effects

of the jet, in addition to the vorticity shed from the airfoil due to

its motion.

The above proof and results are readily extended to cover

divergent steady-state oscillations, 91WIO . At ti-so

these started with zero amplitude, so the jet must return to its

initial position at infinity dovnstream. For pure oscillations,

D w) w 0 , care must be exercised, since the oscillations

began at finite amplitude at u - . The same difficulty

arises in the classical unsteady-airfoil theory and will be discussed

in Section 5.3.

2.7 Complete Equations for the System: Same Properties of Them

The complete set of equatlons required to state the problem

have now been derived and will be collected here for convenience. Since

the equations can be written in a variety of foms, depending on hch
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functions are taken as the pimary unkovns, several alternatives

vil. be given.

7he dynamic equation coupling the Jet to the main stream

is, from (2-8) to (2-11), either

D-____ U2.o cc$ -Z(z )

(2-69)

or

D t A1,),04Xe- doC,,

(2-70)

or

YD-A) ~ tL7 Y, e 00

(2-71)

or

- A-r - i~ t " ~r~

(2-72)

The kinematic equation giving the downvash required to

make the Jet be a streamline at each instant of time is, using (2-44e),

(2-54) and (2-7), either

urW*),+ e-e XA2L~ do~
C

(2-73)

or
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or

(2-74)

vhere

(2-75)

The boundary comditions at the truiling edge of the airfol

are from (2-58) to (2-62), either

"/Ic+A) = YtcL;)

(2-76)

and

_____ + m o FA-&)

(2-77)

or

uy/c+,)- s . ,+) 4 VeO. 9M),

(2-78)

or

(2-79)
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or

(2-8o)

Tbe conservation of circulation in the systan is

expressed, using (2-66) to (2-63), by either

(2-81)

insuring that Aoltt is continuous at the trailing edge, or

(2-82)

oro

(2-83)

By explict use of the 0gaier integerl cnuition (2-82)

or (2-83)., the dovnvash equ~ations; (2-T73) or (2-T4) can be cast in a

form useful in exhibiting certain properties of the solution of these

equations. Using the identity

i (I(-C) I

(2-84)

equations (2-73) and (2-75) MaW be Written
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Fr{ 2-53) and the lagner in'tegrea. conditionm, (2-82), the secon

and thriAd i.nteg~rals cancel, lesvizwg either

(2-85)

Ior

- 4_,_ V I - +.. ..Y 1 - ,

r Y
UAL

Final3y, althog decoipled bg the io.versin of

Sectian 2.3 frd the eqations now required to solve the problem,

the vortex distribution on the airfoil is, fran (2-i•3) and (2-51),
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(2-88)

and can be evaluated once the jet vortex distribution is found.

it is of interest to notice that the effect of the jet

appears explicitly, i.e., by appearance of Cr in the equations,

only in (2-69) to (2-72). These are dynamic equations involving the

pressure difference across the jet,, which is proportional to C3

The fundamental downvash equations (2-19), and the results obtained

therefrom by inversion do not explicitly contain CT , although

the effect of C3  is implicit. Furthermore, the boundary

conditions at the trailing edge are kinematic, and although a

dynamic argument vms used to prove the constancy of circulation,

it may be expressed by (2-81) to (2-83), which are found from the

kinematical equations.

In the cae of the functions •17,' and 4)%),

single equations Wa be found by eliminating U/lrLe. from the

fundamental pair of equations. For the vortex distribution,

differentiate (2-73) three times with respect to and

eliminate between this and (2-T2), giving

e-4d y•4da

(2-89)

Using the transformation C. + f's-4 in the integral,

the three derivatives may be taken, giving the c€wlete result
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+ I--f2;i Iu

C,,

The lterat~ foi of(2-90)

The ltenatpfor ofthis equati on) explicitly incorporating the

Wagner integral condition, isj, frau (2-72) and (2-85),

~ us CCr 3.F 1-5 +~ FL

! C r,

(2-91)

Either of these eqyatians can then be solved, using the conditions

(2-79) and (2-82).
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Folloviuig the sme procedure,, (2-70) and (2-74~) yield

for the potential differen e across the jet

Ua.

&~(4 3A*eu6)

T ~ 7 e--YA 0

(2-92)

or, in the form explicitly incorporating the lagner integral condition,

(-8)o ( 'C-8 ).

2. i

(2-93)

Either of these mayr be solved, using the conditions (2-8o) and

(2-81) or (2-83).-

2hese equations in the jet vortex distribution and potexbial

difference are unvieldy. 36vever, upon approwmtion for mall

values of CS in Chapter 6, they simplfy greatly and are useful



forns. Single equations in the jet ordinate or dowmush on the jet

cannot be found, since the jet vortex distribution appearing in the

integral teo cannot be eliminated comletely.

Py considering some special limits of the equations of the

problem, important asymVtotic properties of the solution near

1-=o may be found.

First., if the donvasb equation., (2-73), in multiplied

by I ,and the limit as d-*o. is taken for finite fixed

. ,the result is

(2-94)

Using (2-53)0 the Vhgner integral, 'Condition (2-82) makes the right-hand

side of (2-94) vanish. Therefore

or, asymptotically in IL ,

(2-96)

vhere VI >| , but as yet undetizzined. Equation (2-72) for

the jet then implies ilat

(2-97)
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or

(2-98)

These latter conditions my also be shown to follov from (2-90)

by multiplying it by 0 , taking the li.•t as %.m--g ,

and integrati• g by parts the integrals containing , , thus

reducing them to f form which vanishes by the Whgner integral

condition.

Next treat the downuash equation in its form, (2-85),

which incorporates the Tfgner Integral condition. klltiplying it

by a and taking the liuit as 7- gives

'2-99)

the integral over •(f,-) existing because of (2-98). The

right-hand side of this equation is in general not zero, and will

be shown in Chapter 3 to be related to the lift on the airfoil. The

dovnvash.. then, behaves asfyptotically in % like

(2-100)

i.e., like the dounwash of a doublet, which follows since the cLrcu-

lation in the system is conserved. fince Via.2. in (2-96),

(2-97) and (2-98) give



(2-101)

and

(2-102)

These latter results my also be shown directly fran (2-91), where

multiplication by 10 , taing the limit of I-t *

and several integrations by parts yields

(2-103)

Similar considerations of the potential difference equations.,

(2-92) and (2-93), hov that

C.,

indicating that afyuitotically in % ,

(2-105)



CHAMTEt 3 - CALCJMA•Cf OF M LIT AND PITCRUK-MOKQT COWICIUITS

3.1 Calculation of the Litt Coefficient

The total lift on the airfoil is the integral of the pressure

difference across the airfoil plus the vertical component of the jet

momentum flux. This jet-momentum-flux reaction acts upon the internal

ducting of the airfoil and is not an external pressure force. The lift,

positive upwards, is written in the linearized approximation, using

(2- 1) as

(3-1)

Defining the usual non-dimensional lift coefficient, using the unsteady

Bernoulli equation (2-12). and using the deflnition of the jet-

momentum-flux coefficient (2-4i), (3-1) may be rewritten

CLC

(3-2)

von Kzuin and Sears (1938) argue that since the total

circulation in the system of an airfoil without jet vanishes, the

vortices occur in equal and opposite pairs. The lift may then be

found by taklng the negative of the time derivative of the impulse

of the flov. Despite the fact that part of the lift in the jet-flap

case is given by the internal jet-reaction force, the total lift is

again gliven by this result. To show this, consider the folloving

integral, using (2-8),

59
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c

(3-3)

vhere the upper limit vanishes by (2-63). Therefure, althogh the

Jet-wmentum-flux reaction acts upon the internal ducting, this force

is represented by the integral of the pressure difference across the

Jet. Substituting (3-3) into (3-2) gives

(3-4)

The total 3lft of the system, then, is given by the integral of the

pressure difference across both the airfoil and the Jet. Integrating

the )A0,1 y term idiately, and taking the time

derivative outside the integral,

+ (3-4)

the second term vanishing at both limits by (2-45) and (2-105).

Inteirsting the remaining integral bypart and using (2-T) Yields

A0
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vhere the first tern vanishes, again by (2-45) and (2-105). fherefore,

2-~ 0

(3-6)

The lift is also given in this case by the negative of the tims

derivative of the impulse of the flov.

To get the lift coefficient in forms useful for calculation, IV

is more convenient to treat (3-2). Integrating the OtI.,i/• t

term by parts,

__- 2..

(3-7)

the first term vanishing at both limits of integration by (2-22)

and (2-45). Substituting (3-7) and (2-7) into (3-2) and tading the

time derivative outside the Integral gives

C

(3-8)

a general expression for the lift coefficient in term of the airfol

vortex distribution alone.



To get the lift coefficient in term of the vortex

distribution representing the 3.tp substitute (2-J&3) and (2-51)

into (3-8), giving

CL L-AI L -- 4

TF74
+CC

w- . -C -': f4. .-- r.+

(3-9)

The order of integration may be interchanged in (3-9), using

the arguments folloving (2-6.), and the resulting integrals over I.

evaluated by (A-51) and (A-53). Using these results and the classical

lift terms discussed belov, the lift coefficient becomes

L.,.,Y- C,. W -C,,tF) C,, -..

+ •,~.(gva,-I) ~'is*)dia + c,* .... i )

(3-10)

•his is a completely general result for the unsteady lift coefficient.

The constancy of circulation in the system is not incorporated in

this result.

The integrals over the airfoil-quasi-steady vortex distribution,

•' l•) , have been identified as the same term vhich arise

in the classical unsteady-airfoil theory. These have been investigated

by von ]arzm•n and Bexs" (1938), vhose notation ana definitions are to

be used here. The airfoil-quasi-steady lift is that circulatory force
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due to the airfoil shape and motion almne, neglecting any wake or Jet

contributions as discussed in Section 2.4. Its coefficient is denoted

by and is, using (2-53),

UC.

(3-11)

The airfoil apparent-mass lift is the force of non-circulatory

origin and depends on the airfoil shape and motion only. Its coefficient

if denoted by CL, I 4) and is defined by

(3-12)

To get CM in terms of the doenwash on the airfoil, substitute

(2-51) into (3-12)p giving

2.

Inversion of the order of integration using the arguments following

(2-46), and evaluation of the resulting integrals over % by

(A-50) and (A-52) gives

4

(3-13)

Since the potential difference must vanish at infinity

downstream as discussed in Section 2.6, (2-66), this result, (3-10),

can be simplified. Identification of certain of the integral terms

in (3-10) by the fener integral condition, (2-82), and by the

definition of the airfoil-quasi-steady lift coefficient, (3-11),



substitution of A4,V for and

substitution of (3-3) for CX " 'r give, upon

cancellation of terms,

+ &dfOsf4NI. (3-14)

Integrating the second integral of (3-14) bW parts yields

2- )-

UOI

the contributions at the limits of integration vanishing by (2-22)

and. (2-105). The integral remaining cancels the last integral

in (3-14), giving the compact form for the lift coefficient
to

In this expression, all the Li~ft of a circulatory nature is included

in the integral.

The lift coefficient can be found iv. terms of the limiting

behavior of the downwash, vortex distribution and potential difference

at infinity downstream, as promsed in Section 2.7. Rumination of

(3-13) and (3-15), in conjunction vith (2-99), (2-103) and (2-104)

gives
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(3-16)

(3-17T)

and

Cat)=

(3-18)

For the sake of completeness, an expression for the lift

coefficient can be found vhich is of the form of the von KAr:An and

Sears (1938) result. To show this, add and subtract CA ,

from (3-15) using the Wagner integral condition, (2-82), take the

time derivative inside the integral in (3-15), and substitute (2-10)

ior •/~y/ inside the integral, giving

L 4-,

(3-19)

Integrating the integral over "1,4Vf" by parts gives

C~t 2- 16i~* J

cc k11~,41+



since the contribution at the limits of integation vanish by (2-22)

and (2-102). Substituting this into (3-19) simplifies it to

1>s o/)CLA C. 4)+4, +CL& + C7f~~~Y/~) 1

(3-20)

vhere

(3ý-21)

In the classical case, CLp 1• is the -ake-effect tern but

here includes the Jet effects as does the last tern. This term

vanishes vith C.7  , leaving the von K&imn and Sears (1938)

result.

3.2 Calculation of the Pitching-Mcment Coefficient

The total pitching maent•, positive nose downward about

same reference axis, is the integral of the moments of the individueal

lifting elements of the airfoil about this axis, plus the moment of

the Jet-mamentum-flux reaction about this axis. To determine this

direct-Jet-reaction mcment, consider the following arbitrary airfoil

at sane instant of its motion.

C01
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By the linearized approxiustion, A A 49 since

'EY J,. I +a)t ,

iY±±±DL#,, ~c,) -c

The moment due to this force is

xl j- 11,-,%) 4-'., be.].

The total moment is, then,

M ~ c Ak4v. +)44 Yee+,+) f41

(3-22)

Defining the non-dimensional pitching-moment coefficient, and using

the unsteady Bernoulli equation, (2-12), aMd the definition of the

moentum-flux coefficient, (2-4), (3-22) becomes

CMUY It)

Aaec

+ Cgr [(I-4a 1&+t.
(3-23)

As for the lift, this equation may be shown to reduce to a

form analogous to that which von Eirn and Bears (1938) derived

considering the time derivative of the moment of impulse. To show

how this differs in this case due to the moment of the internal jet-

reaction force, consider the folloving in.tegraJ., using (2-8),

+ lie=



which upon integration by parts

A further integration and use of (Z-63) in evaluating the limits of

the integrals gives, therefore,

-•a *)-i&4-*3 -Y- 4.- .O j

(3-24)

Substituting (3-24) into (3-23) yields

0

(3-25)

Integrating (3-25) by parts, and using (2-7),

CM 4u-c

The limits of the first and third terms vanish by (2-45) and (2-105),

so the moment expression becomes

00

CM () ~ U f~-& t~ht~dle -+ C~7 6.

(3-26)

This corresponds to the von Klrmii and Sears (1938) expression except

for the term Cr 6 This term is the monent of the momentum

flux at infinity downstream times the distance of the reference axis

below the undisturbed position of the jet at infinity downstream. It

is not surprising that this additionma tern appears, since the moment

due directly to the jet reaction acts on the internal ducting of the

aLrfcil, not as a pressure force on the airfoil surface.



To get the mment coefficient in forms useful for

calculationa similar treatment to that made in the lift-coefficient

case vili be made. Integrating the term

in (3-23) by parts gives

the integral vanishing at both limits of integration by (2-22) and (2-45).

Substituting this result and (2-7) into (3-23) and taking the time

derivative outside the integral gives a general expression for the

pitching-manent coefficient in terms of the airfoil vortex distribution

alone.,

C14 Umfz+Lýfj (,-A) rdCIL 7-I1 4 -+ 0 %"ujlmO

(3-27)

The pitching-mament coefficient also can be expressed in

terms of the vortex distribution representing the jet. Substitute

(2•-3) and (2-51) into (3-27), giving
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CAM elk & 4 )- Ltu +2.d1- )'t ~ .~rk
a

+'' + cy~) b
+

(3-2)

The order of integration again may be interchanged by the argment

following (2-46) and the resulting integrals over I evaluated by

(A-51), (A-53) and (A-55). Using this and the classical terms

discussed below, the pitching-mament coefficient reduces to

+ ~ ~ ~ ~ ~ 2 -Z-~++C 1.).t&t

(3-29)

This is a general result, the constancy of circulation not having

been used.

The integrals over the airfoil-quasi-steady vortex

distribution in (3-29) have been identified in teru of the airfoil-

quasi- stea&dy and apparent-mass lift coefficients defined in (3-11) to
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(3-13), and the analogous pi•toJhinment coefficients discussed

by von dm~n and Sears (1938). The airfoil-quasi-steadr Pitching mant

is that moment of circulatory origin due to the airfoil shape and motion

alone, neglecting wake and jet contributions. Denoted by CtA. {4r

its coefficient is

(3-30)

By the same argument leading from (3-12) to (3-13), this can be written,

uuing (A-50) and (A-52), as

C N O ik IL -(3-31)

By convention, this is a moment about midchord ( 4') . The

airfoil apparent-mass pitching moment, also about midchord, is of non-

circulatory origin and depends on the airfoil shape and motion only.

Denoted by CA, U• its coefficient is defined by

(3-32)

By the argument leading from (3-12) to (3-13), this also can be

written, using (A-50), (A-52), and (A-54), as

2..

(3-23)

By use of the condition that the potential difference at

infinity dovnstrem vanishes, (2-66), this result, (3-29), can be
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si&Ulified. Identification of certain of the integrl tems in

(3-29) using the Vsgner integral conditinc, (2-82), and the definition

Of the airfoil-quasi-steady lift coefficientp (3-11), substitution

of ot r ejjt• by (2-7) vhere needed, and substitution

of (3-24) f•r Cz,-) t*' -- Y ,'!Jgive, upon cancellation

of terms,

C,•lt -. C.l0 + ,lJO + g iii4- +•,l

+ +et.. + 1 -2 A + ). b

Integrating the second integral in thiJs expression• by parts yiJel~ds

the contributions at the limits of integration vaniuhing by (2-22)

and (2-105). The remaining integra cancels the ls intera in
(3-34), wich, upon factor~ng of the first integral beco(es
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a.

~ftqc+~frd .2. - Ll.c~ '1~ + C3.4

(3-35)

To calculate the rltching-mment coefficient by (3-35), may one

more integral over the jet vortex distribution need be calculated

besides the integral required for the lift coefficient in (3-15).

An expression for the pitching-mament coefficient of the form of

the von KICm~n and Sears (1938) expression is found fran (3-35) by

adding and subtracting 2 0I-2.O) (L. U) from (3-35) using the

Wagner integral condition, (2-82), taldng the time derivative inside

the integral and substituting (2 10) for 01,06

This gives

Cm 10 z~ CMLD IQ Cm.1. M +(-a+)4 1  i-) . A~bi)C1)

"_ANI + Cv6

+ HC -5

(3-36)
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Use. 2.UO IVJ

40 O

Iz I-e'tn h !'€, •d •, -"e"u. b,, prt-, gi.ves.

4vA~ + 43 + 1 ___

- i .4 U16'

do wi

(h1 -2) .2 3 -~)F~1*d

UOC

vhere the contributions at the liLito of integration vanish by (2-22)

and (2-102). Substituting this into (3-36) and cancelling termr gives

Ca. +~ Co~l.f) +CegU' +((t-2o)[C140 + CL,t +. L4~C~

(3-3T)

This form corresponds to the result of von Eirmia and Sears (1938).

In addition to their teus, there are two additiowl Integrals,
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proportional to a ,md also the 6  term discussed above.

If CT 0 , the classical results are recovered, and the

mazent contains only the same terms which were evaluated to find

the lift coefficient, (3-20).

There are no expressions for the pitchinzg-moent coefficient

in terms of the behavior of the jet at infinity downetream as were

found for the lift coefficient.

The pair of equations (3-15) and (3-35) are the simplest

to use for the calculation of the lift and Pitching-moment coefficients,

since only two integrals over the Jet vortex distribution need be

calculated. For convenieuci they are written here,

2-W Ci. 4y) - ) dg,

(3-38)

and

CM1 ~ C +M C.& + I 6-2A) Cc., W~ Al 0j~4 l'~iv*df

-Lc I'Jj f O/fdI/ dt + tl1.c)& t, +CrL.

(3-39)
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4.1 Jet-Deflection Problem

The fundamental jet-flap problem, both in the steady and

unsteady cases is that of "Jet deflection," i.e., the emergence

of the jet from the trailing edge at a prescribed angle vith

respect to the slope of the airfoil ordinate there. This problem

has been called by Nblavard (1957) the "singular*bloving" problem in

recognition of the logarithmic singularity in the vortex distribution

at the trailing edge required to satisfy (2-61). Practically, Jet

deflection might be achieved by a very' i& flap at the trailing

edge, or by internal ducting, and is assumed to be adequately

represented by the present model. The importance of the problem

resides in its being unique to the jet-flap, for if C'T E 0 ,

specification of the jet deflection angle can no longer be made and

the problem is trivial.

As a model for the jet-deflection case, a flat-plate airfoil

aligned vith the free-stream direction is chosen, the jet having

the time-dependent angle of' deflection, (2-13),

(4-1)

For transient inputs this problem is of considerable

practical importance, since the jet-flap has been proposed as a control

mechanism and the response of the airfoil to such inputs is basic to

76
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the full understanding of such usage. Oscillating inputs are Also

important, since use of the Jet flap for cyclic pitch control of

helicopter rotor blades has been suggested by Dorand (1959).

Since the airfoil is aligned with the free stream

0 ~ ~ , Oz _ _ ______C_

(4-2)

and hence from (2-1),

(4-3)

All the airfoil- uasi-steady and airfoil apparent-mass terms are

identically zero.

The basic equations are, in terms of •1',L) and

La , - the others are omitted here and in the remainder

of this chapter for simplicity - from (2-69) to (2-87),

(4-4)

and either

VIM- '

ChQ-f5
NI r(4-5)
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or

(4-6)

with either

•Ar(c÷,-*) UoTL, F'4),

(4-7)

or

S) y l-d: " Uo ,,

- (4-8)

and

f/-0

(4-9)

Once this set has been solved, the other properties of

interest, e.g., the lift and pitching-manent coefficients, may be

found fran the appropriate results of earlier sections.

4.2 Problem of Airfoil in Plunging Notion

Te problem of a flat-plate airfoil moving in a purely

plunging motion with a jet emerging tangentially from the trailing

edge may be described by

0 __-C.------_IL

u. -____
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where is the non-diwr•sioinal amplitude of the plunging

motion, and is a -6m3 paraeeter coanistent with linearization of

the problem. This problem does not have much application in transient

motion, but in oscillating motion its results are important for

determining the coupled binary bending-torsion and tertiary bending-

torsion, control-surface-rotatiun flutter stability criteria.

From (2-1) and (4-10), tie davnvash on the airfoil is

•l•, -- o¢ F' , *IQ--c

vith (4-11), the important airfoil-quasi-steady terms in the basic

equations are from (2-51), (2-53), (2-54) and (2-87), using (A-9),

(A-38), and (A-39)

(4-12)

Uri Ila) _o~ Fa

(4-13)

and

(015
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The basic equations are, then, ftr (2-69) to (2-87),

be.

(4-16)

and either

or

vith either

(4+-19)

or

(4+-20)

and

(4+-21)

Upon solution, the other properties may be found. The

airfoil-quasi-steady and airfoil apparent-rssa coefficients are,

given by (3-11), (3-13), (3-31) and (3-33), using (A-18) and (A-21),
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(4-22)

C..1 1o = liket h .:E i) (4-23)

4j~~) -~ £~~'),(4-2I4)
and

4.3 Problem of Airfoil in Pitching Notion

A flat-plate airfoil moving in a pitching motion about an

aids a distance eC behind the leading edge may be described

by

(4-26)

where 0(0 is the eamlitude or the incidence angle and is

mall consistent vith the linearization. Mhe jet exerges fr the air-

f•il tangentially at the trailing edge. ik4e the pluning cae, the
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results of this problem for oscillatory motions are important in

the binary and tertiary flutter analyses.

The dovuvash on the airfoil, is, by (2-1) and (4-26),

U11%,• Uo do, FMO + 6t {%-ec) FIM•, ox- x. c.

(4~-2T)

Te important airfaLl-quasi-steady quantities in the basic equations

are, from (2-51), (2-53), (2-51) and (2-87), using (A-9), (A-11),

(A-38), (A-39), (A- 42) and (A-43),

FU 14 X + e- f O(Le-C )

(4.-29)

Po(4) = TrUooC Ft+) + "IT .c1(4-e) F'u)],-

(4-30)

and

wt~j,) U.a(6 Ffit) - 3f'iiE)'I

+(4-31)
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he basic equations a, in.n frcm (2-69) to (2787),

(4-32)

and either

, , • .+ - l ]II P)

(4-33)

or

go

c~i4-(4-31 )

u~ (,-e)- - •tL' -"7)J L- "

with either

(Artc+,ir) = locs FU) +9(olle-rF'I-),

(4-35)

or

(4-36)

and
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The airfoil-quasi-steady and airfoil apparent-mass lift

and pitching-mcment coefficients are, by (3-11), (3-13), (3-31)

and (3-33), using (A-18), (A-21) and (A-23),

U.-)
(4-38)

(4-39)

(4-4.0)

and

(4-41)

4.4 Problem of Blown Flap in Unsteady Motion

Another practical jet-flap system which has been considered

is the so-called "blown flap," or "Jet-augmented flap.e In this

configuration the airfoil has an ordinary trailin-edge flap, the jet

emerging at the hinge point, following the flap. and leaving tangentially

at the trailing edge. This has been represented in the thin-airfoil

model as a bent flat plate with a jet emerging at the trailing edge.

Spence (195B) has discussed the physical considerations of such a
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model. Here the problem concerns the time-dependent motion of

the flap about its hinge point, which is located a distance EC

ahead of the trailing edge, i.e.,

-x 0

Both the transient and oscillatory responses are of importance for

this problem, the fo~mer because of the control. use of the flap, the

latter because of its importance in the tertiary bending-torsion,

control- suri'ace- rotation flutter characteristics.

Defining an angle k by

(4-43)

the dovnvash on the airfoil is,, from (2-1) and (4-4e2),

U(AT/ )~ 0 4 % O .9 ~C 401ý3.

U+ PQ4~ +fJEL-e.c:fJF'Ij) , Cfe L4C

(14-144)

The airfoil-quasi-steady quantities in the 'basic equations are,

from (2-51), (2-53), (2-54) and (2-87), using (A-36), (A-37), (A-40), (A-40l,

(A-8),. and (A-10),
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(4-47)

(4-48)
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he b•sic equations aee, from (2-69) to (2-87),

(J4 -4i9)

mnd either

030

(4-50)
or

W' 1 + -6)
CCl

- AC(- ~ i] F114),

(4-~ 5 1)
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vith either

w'Ic+• • ap. FIO +.f,, W. F'1),v

(4-52)

or

(4-53)

and

4 ~ '.)(4-.54)

Airfoil-quasi-steady and airfoil apparent-mes lift

and pitching-mament coefficients are, fram (3-11), (3-13), (3-31),

and (3-33), using (A-17), (A-20) and (A-22),

CLo1)'. , .. +, ,k) )f [Fit-).,, +,,.. \f2.-,-.0]U c+w÷ prI

(4-55)

(4-56)

(4-57)

and

(+-U.

(4-58)
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If the limit E-..o ,or I.-sbO ,istaken

in this problem, the equations reduce to the pure jet-deflection

equations of Section 4. I, provided care is taken at the trailing edge

to preserve the Jet-deflection angle in the limit of vanishing flap

chord. Also, in the limit R - I , or X. -0 T , the equations

reduce to those of-an airfoil in pitching motion about its leading

edge, i.e., the limit of .-*bo in the equations of Section 4•.3.

4.5 Problem of Airfoil Entering Sharp-Edged Oust

As seen from equation (2-15), there are many possibilities

of gust configurations which might be considered. The fundamental

transient gust problem which has been considered in the literature is

that of a sharp-edged gust of constant upwash a tude moving

over a flat plate airfoil with relative speed 0A, i.e.,

(4-59)

For Z w I , this is the vell-known Kfbsner (1936) problem, cf.

von d&rmn and Sears (1938). Mles (1956) generalized it for all

positive and negative values of, , positive values

corresponding to gusts proceeding over the airfoil from the leading

edge to the trailing edge, and negative values to gusts overtaking

the airfoil from behind. The cor responding oscillatory problem

is defined by

WIILA - W -

(4-6o)

Mhis is the Sears (1941) problem of a sinuseldial gut of constant

aVpltude if \.I ,and vas extended by KWW (1952) for a genena,
cOlex )



For the Jet-flapped airfoll, the presence of the Jet

extending to infinity downstream, along with the assumption, implicit

in Section 2.3, that the disturbances of the jet must die out at

infinity downstream indicate +Iat the transient, sharp-edged gust

moving over a flat plate airfoil with tangential jet from the

leading edge towards infinity downstream, X> 0 is a

reasonable problem to treat.

The dovawash distribution of the gust, (4-59), implies that

the basic downvash equations for the system, (2-19), rewritten to

express the additional dovnwash which must be induced by the vortex

distribution to cancel (4-59) must be

0

(4-61)

where UL.tIl.) is still given by (2-1). The inversion of

Section 2.3 again holds for this equation, so the airfoil-quasi-steady

expressions may agaen be calculated in the usual fashion, replacing

urCI1 by 1 •_- ?3) Vin (2-51), (2-53),

(2-54) and (2-87) and using (A-7), (A-34) and iA-35), giving

._ IL

+, + . I•-
OG%~(C - )

(4-62)
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(4-63)

J*II ' .. V-, o ,t

(4-64)

S .-r #[ €•• • . ,

"," jr L ,,,Y.j . •

(4-65)

The fundamental equations we, then, using tbe Inverian

results of Secti 2.3 vith (4-59), and (2-69) to (2-87),
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and either

ror

I MI Y
C!;

;q i a- . 0 4
- L~tiL4t. ~'-~)- ~7iK(4-6T)

or-~
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vith either

wUc4k&V 0~

(4-69)

or

do0

OZ'O

(4-7T)

Mhe a•rfil- que.si- steady and airfoil apparent-maus lift and

pitching-mcment coefficients are, calculated in the smine fashion as

(4-62) to (4-65)., from (3-11)., (3-13), (3-31) and (3-33), uuin~g (A-16)

and (A-19)

. ooIN/.--ioti]0

(4-72)

C(.,73)

(4T3



9I&

-21

(4-75)
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5.1 Reduction of the Efuations to the Classical htea-Airfoil Theo

The classical theory of the unsteady motion of thin airfoils

vithout jets is contained in the above formulation. To recover the

fundamental equations of that theory it is sufficient to set C; go

forMally, provided certain remarks about the equations are made. The

vortex distribution behind the airfoil, 1L & , C-Lao.K.

and the donvash behind the airfoil, Wt-iL,&I

are convenient functions to treat.

As discussed in Section 2.7, the jet effects appear

explicitly only in the dynamic jet-interaction equations (2-69)

to (2-72). All the equations derived from the inversion of the

kinematic dovnvash equations, (2-19), do not change if CT a O

provided the /square-root singularity at the trailing edge is

understood to be excluded by the Latta condition. Therefore (2-73)

and (2-8) remain the same. In the absence of the jet, it Is no

longer possible to prescribe the slope of the jet deflection at the

trailing edge. Hence, at the trailing edge the downvaah is always

continuous, (2-57). The circulation in the system is constant by

the argument of Section 2.6 using Kelvin's Theorem, so the Wagner

integral condition, (2-6B), which follows from a kinematic equation,

remains the same. Therefore the only equation vhich formally cha• es

Is the jet-interaction equation, (2-71), say. The pressure

difference across the i- ais beakind the airfoil is proportional

to C.7 , so in the absence of the Jet,

95
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(5-')

This equation is a statement of Helmholtz' Theorem for the conservtiozr

of vorticity of a fluid particle convecting with the stream, cf. Sears

(1954). Equation (2-69) becomes, when C: So using (2-7),

(2-45) and (2-49),

(5-2)

and, in particular for -C+ ,

(5-3)

A clear picture of the physical nature of the problem can

be seen from (5-1) and (5-3). As the circulation around the airfoil

changes with time, vorticity is shed off the trailing edge in equal

and opposite amounts according to (5-3). This vorticity then convects

with the free stream, its strength remaining constant by (5-1).

Solution of the problem has become considerably simplified

by the disappearance of the downwash from (5-1), because it can

be solved immediately for the vortex distribution, without simultaneously

solving for the downiash. According to Chapter II of Webster (1955),

the solution of the first-order, hamogeneous, partial differential

equation, (5-1), is that the vortex distribution m4ust be a function

of the characteristic variable {- , nme-ly,
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(5-4)

The functional form of 1- )is then determined by

considering the Wagner integral condition, (2-82), as an integral

equation for h'
00

(5-5)

This is the problem considered by von Kvnn and Sears (1938), and

many others, although the equations were derived there in a more

physically direct manner.

Once the vortex distribution in the wake behind the

airfoil is known, the downwash behind the airfoil, (2-73), the

vortex distribution on the airfoil, (2-88), and the other properties

of the airfoil and wake may be found. The lift and pitching moment

coefficients may be calculated fram (3-20) and (3-37) as discussed

in Chapter 3.

A sharp contrast may be drawn now between the classical

problem and the Jet-flap problem. Classically the vortex strength

in the wake behind the airfoil depends, cf. (5-1) and (5-3), on the

history of the circulation around the airfoil, or as expressed

through the Wagner integral equation (5-5), on the airfoil-qujai-

steady circulation. Thus P -) i s the imortant input

to the problem, the actual distribution of dou, wah on the airfoil

having been integrated. Ifny different chordvise downwash distarbutio•s



would give the ame vortex distribution in the rake if they led

to P(e) of the same time dependence. In the jet-flap problem

the vortex distribution representing the jOet depends not only on the

history of the circulation around the airfoil, but also on the details

of the downwash distribution at every point of the jet, through the

dynamic coupling expressed by (2-69) to (2-72).

"5.2 Properties of the Classical Transient Solutions

The two types of transient problems are those in Vhich

the motion of the airfoil is initiated at 0 = 0 , in accordance

with (2-14) and (2-16), and those in which the leading edge of the

airfoil enters a gust at 4 -O , in accordance with (2-15) and

(2-16). In these linearized problems the shed vortex wake behind

the airfoil grovs in length with rate Uo after initiation of

motion, so, at any time, & , it extends downstream to luC+U÷

The fundamental equation to be solved, then, is the Wagner integral

equation, (5-5), written as

(5-6)

For airfoil motion, the fundamental problem is the so-called

Wagner (1925) problem, where the airfoil-quasi-steady circulation has

step function time dependence,

(5-7)

Once the solution of this problem has been found, solutions for other

transient P. (Q my be found by DIh l superposition. Mhe



application of the Waooer prdbem to actual airfoil mations of the

types considered In Bections 4.2 to 4.4 has been misunderstood at

times In the literature. Rbference to the particular problms of

the above Bectlw will clarify this assertion. For an airfoil in

plunging motion Vith F141 9 ) i.e., pluging at a

constant speed, (4-1l) gives

a direct application of the WaVger problem. On the other hand,

for an airfoil in pitebig motion vith FR , 1L) , i.e., the

airfoil being snapped up instantaneously to an angle of incidence,

(4-30) gives

(5-9)

where the Dirac delta function, 4 , is

d.4)

and has the properties that

0 (5.1,1)

but such that do

It is imortant to recognize that the term must not be

neglected, as it is, for instance, by BobinAon and IAUaw&= (1956)
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on p. 505. Physically this term represents the limit of the aotion,

vhich, although occurring in a vanishingly mULU time int•wal., occur.

at such a rapid rate that the result is a finite rotation tkrough

the angle 40 . Considering this term as such a limit, it

is clear that it vili have an important effect, particularly for

s-a times. Therefore, only for an airfoil pivoted about the

three-quarter chord point, e z s , is the Wagner problem

directly applicable to the airfoil snapped to angle of incidence.

Likevise, the trailing-edge flap snapped to an angle of deflection

wi th Fit- ( gives an airfoil- quasi- steady circulation.,

(4-47q), which contains both and

The fundamental gust problem, that of a sharp-edged

gust of constant amplitude i moving with a speed UO/

relative to the airfoil, >0 , is formulated in Section 4.5.

The airfoil-quasi-steady circulation is, from (4-64),

Sharp-edged gusts overtakig the airfoil from behind, N 0 ,

can also be treated, cf. Ales (1956), but cannot be extended

readily to the jet-flap case and will not be treatewere.
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A method of solution, valid for all transient P.lt),

vili now be outlined and certain results noted. Upon the

transformation

(5-13)

(5-6) becomes

(5-14d)

In a similar fashion the lift coefficient due to the wake, CA. ) ,

is, from (3-21),

(5-15)

and finally, from (2-67), (2-6B), (2-7) and (5-13),

(5-16)

Sears (1940) observed that the integrals in (5-14) to (5-.16) are

of the convolution type, and used Laplace transforms as a convenient

technique for treating them. Defining the Laplace transfora of a

function by

0

(5-17)
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A method of solution, valid for anl transient P.I)
vill now be outlined and certain results noted. Upon the

transformation

(5-13)

(5-6) beca-es

(5-14')

oi a similar fashion the lift coefficient due to the vake, CL ien) ,

±un fron (3-21),

and :finally, fr.n (2-67), (2-6) (2-7) and (5-13),,

~(i~t) d it

(5-16)

Sears (19W0) observed that the integrals in (5-li4) to (5-16) are

of the convolution type, and used ILaplace transforms as a convenient

technique for treating them. Defining the Ilaplace transform of a

function by

P(P) sl e- pi I O L(5-17)



Bears (19W0) shoved that

I e"• ro M

(5.-18)

(5-19)
and

(5-20)

vhere a-nd.) ad Sze the Modified Bessel

Functions of the Second Klnd. From the definition of the

airfoil-quasi-steady lift coefficient, (3-11), and using the

airfoil appaxent-mass lift coefficient appropriate to the particular

motion considered, (3-13), the lift coefficient, (3-20), is uon

transfozration,

(5-2T)

For the ner proble, ( ),

(5-92)
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and the well-known results emsrge. Upon Inversion of. the 1ap3ae

transforms, for instance, the =U- and large-tiae lift imits are

CJO4 J4., C-lt") + 11- + 016C4... (Oue=) - ÷.e •'.~ 2

and

(5-2i4)

It is of interest to note in the application of (5-23) to

the plunging case that the lift coefficient as -&--0+ aai,

using (4-P-3),

(5-2%)

Therefore, for sam.l time, airfoil apparent-mas. lift is d•minant.

This follows for all types of airfcdl motion, since re1N) ,

ad hence C/..L Io and C1. . i&' have, for osill tim•, the

same time dependence as the airfoil domvash, of. (5-20) and (3-11),

while C1.1,6 has time dependence like the time derivative of the

airfoil dovwavash, cf. (3-13). That is, CL MA CL .4 i)

are, for smll time, proportional to the velocity of the airfoil,

while CL, t'&- is prOpirti=Ad to its acceleration.

In view of the nature of the jet-flap equations, sce of

the local properties of the flov are of interest. Fron (5-18) and

(5-22), it can be shown that, upon talkig the inverse Laplace transfoas),



This /square-root singularity in the vortex distribution at

the trailing edge of the mke vortex sheet is the jthmstical

representation of the "starting vortex" observed by Prandtl in his

striking pictures of these flows, ef. Prandtl and Tietjens (19 3 41).

The downash behind the airfoil can be calculated fron (2-73) or (2-85),

in principle, once (-!) has been found. Hobbs (1957)
made such calculations in order to estimate the loading on the

tail of an aircraft whose wing is flying through a gust field.

Without details of the calculations, Hobbs gave curves for the

Wagner problem which indicate that the downwash is finite as

y--- c.i-U.L- on the wake vortex sheet, has a square-

root singularity as 1. -* C. +UL h off the sheet, and then

tfts off at infinity like -I/ .• In analogy with the 1]havior

bf the domnwash induced by the sing6larity of the vortex distributions

near the leading edge of a flat-plate airfoil, this behavior at

C+Uot is' consistent with (5-26).

As t-e' a , the end of the shed vortex sheet moves

in towards the trailing edge. Also, inversion of (5-19) with (5-22)

shows that as &4'O In the

absence of circulation around the airfoil, there must be flow around

the trailing edge in the first instant, '0 + , after

initiation of the motion, in order to satisfy the dovnmah boundary

condition on the airfoil. Presence of the jet for ' 0
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vith the requirement that it alwmys r•mn tangential to the trailing

edge of the airfoil, (2-57), vill therefore greatly modify the flow

pattern near I a C ÷+U. by preventing flow around the

trailing edge in the first instant, and thus for a11 later time.

If the response to Pt s &VQ& in desired in

order to treat the problems of an airfoil snapped up to incidence

and the imulsive deflection of a trailing-edge flap, (5-9) and (5-11),

fl 1I'~ wmay be substituted formally into (5-18) to

(5-21). However, consideration of j (p) for this input indicates

that, for -- , 40p. p. • . Inversion

of this transform cannot be carried out because it is too singular,

corresponding, as seen by differentiation of (5-26), to rVO) ̂  t"-"/

for sm'l I~ This implies - that although I~()*C
can be substituted formally into (5-18) to (5-21), the integrals

(5-14) to (5-16) and these transforms fail to exist. Therefore the

cases involving j1 ~ I) are too singular to permit a

solution. However, the step-function inputs are themselves idealiza-

tions of physically realizable inputs. so these physical inputs can

be treated by direct application of the results (5-18) to (5-21)

with their .(p) •

For the sharp-edged gust problem, as defined by (5-12),

the transform of Otm) y be found to be, cf. Sears (1940),

or Miles (1956),

(5-27)

vhere :* (WO) andi . ~ are the Modified
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Bessel Functions of the First XLnd. Substitution of (5-27) into

(5-18) to (5-21) gives en its results the fascinating one

noticed by Sears (0190) that, for the Kssner problem, Au-I

(5-28)

which has the sawe dependence as (for the Wgner

problem, using (5-19) and (5-22). The lift coefficient for an

airfoil flying throug a stationary gust depends on in the

same fashion as the cir.ulation in the Wagner problem.

The vortex distribution at the trailing edge of the shed

vortex sheet is, upon inversion of (5-18) with (5-27),

(5-29)

vanishing as %-o- C+Uo+ - on the sheet, hence

continuous at '•..C+ uO& • Hobbs (1957) also

gave curves of dowavash for the gust case with several X 'O

He found that, consistent with the continuity in the vortex

strength at the end of the shed vortex sheet, the downvash is

continuous there. However a discontinuity in doinvash appears

at '.. %.+ . .6- Whc, hi is the point in the make

corresponding to the arrival of the gust at the trailing edge of the

airfoil. By the argments of p.33, this discontinuity in dovmmsh

implies a logarithmic singularity in the vortex distribution at

that point. fat the discontinuity arises at this point rather than
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at xC+UAt , which corresponds to the arrival of the guut

at the leading edge of the airfoil, can be seen by considering

30 .(5-12) . This function of time is continuouff

and has a continuous slope at :0 , but in continuous with

a discontinuous slope at 6 , the discontinuity in

slope leading to the dovnvash discontinuity.

The presence of the jet for C. Z0 in this problem

will modify the flow pattern near g - U.e •- It . since the

Jet is required to remain tangential to the airfoil at the trailing

edge, (4-69), preventing a velocity discontinuity when the gust

arrives there.

5.3 Properties of the classical Solutions for Steady-State Oscilations

The appropriate functions of time for steady-state

oscillations of airfoils have been discussed in Section 2.2 Airfoils

in infinite sinusaidal gusts have been treated by Sears (1941) and

Kemp (1952)., but will be cmitted herg. For oscillations beginning

at do -. , the shed vortex wmke behind the airfoil will

be infinite in length at the finite times under consideration.

The fundamental problem for airfoil motion is the Theodorsen

(1934) problem, in which the airfoil-quasi-steady circulation is

exponential in time; i.e.,

P m z c eý'f

(5-30)

so the governing Wagner integral equation is
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7his Problem was shown by Sews (1940) to be related to the fisher

problem of Section 5.2 in the fashion typical of linear systems;

i.e., the steady-state response to an exponential input like (5-30)

is found from the Laplace transform of tM unit- step-function

response by replacing the transform variable p by A1))

and multiplying the response by (W)OiLwt . It is of

certain interest to go through the solution in the manner of von Kirmmn

and Sears (1938). The application of the Theodoresen problem to the

airfoil motions considered in Chapter 4 presents no difficulties of

the type encountered in the Wagner problem. Considering the airfoil
jw 4.

in plunging motion, for FIt-at w , et(t4 is

(5-32)

and is a direct application of the Theodorsen problem. The airfoil

oscillating in pitch and the airfoil with oscillating trailing-edge

flap, both vith F[i) - e-'" are also direct applications

of the Theodorsen problem, since, from (4-30) and ("-47),

(5-33)

and

r NAW usC (ktS40 +

respectively.
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For steady-state oscillationsw, a the functions have

time dependence m e , therefore

4r 1:fl z Lrw) e~W~~

(5-35)

and the Wagner integral equation, (5-30), becanes

usc I I o
(5-36)

The integral in (5-36) exists for •, but for pure

oscill ations, twf)- -0 , the integral is finitely oscillatory.

A cmon approach to this, cf., Robinson and Laurmnn (1956), has

been to solve the problem for 9lt04- and then argue by

analytic continuation that the result is valid for W(WI O ,

too. von Y~zun and Sears (1938) treated this in another Vay. They

considered as the basic equation not the Wagner integral equation,

•(5-), but the equation (5-3), from which (5-5) can be derived if

IA-t A vanishes. -Substituting of (2- 67)

into (5-3), and using (5-30) and (5-35) gives

S'wVI + if(A)i'~i A 4 -ati

(5-37)

The integral on the lefthand side of this exists for •(t)@ O

To evaluate that integral, von rimn and Sewrs (193B) used the

integral representation of the Modified Bessel lanction of the

Send riLnd, cf. Jahnke and Bde (1945), Vith identically equal

integrals added and subtracted, i.e.,
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- -i;11*t" [ "~f t"si)v. ' " •o+. •

(5-38)

Dfferentiating this vith respect to wc/xu , and using the

identity

(5-39)

the integral in (5-37) can be evaluated to give

uc e 1 w) 0

(5-4o)

vhere

is the Sears Function, and va tabulated by Kemp (1952). The

circulation, also fran (2-67), is

The circulatory lift coefficient my7 be calculated from (3-20),

usng (5-35), there being no difficulties vith convergence, giving

(5-43)



111

where

is the Theodorsen Function, tabulated in detail by Luke and Dengler

Of particular interest for the jet-flap analysis in the

shed vortex distribution in the wake, given by (5-35) and (5 -40),

i-te.,

(5-4&5)

which has the above-mentioned oscillatory properties at infinity if

•lw ----0 . The dotnvaoh behind an airfoil performing

steadly state, purely oscillatory, ý (W) r.o 0 plunging motion

was calculated by Lapin, Crookshanks and Eumter (1952). Their

results were

W ia~o NJ + v. 4i ('k

where

(

r-,,,•'"' •, • "- K~t(o) eJ&7)
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is a function defined, discussed and tabulated by Bchvmrz (19•3).

A few limiting cases of (5-46), for didich simple expressions = be

found, were given in their paper. For CU -0• , (5-46)

reduces to the airfoil-quasi-steady downwash distribution, tU41.f-0•)

of (4-13) • In the limit of W -0 Go

e- ••"" +otto) , •,(+ ,

(5-48)

The latter expression of (5-48), although not given by them, my

be found using equation (30*) of Schwarz (1 93). Away from the

trailing edge, the dovnwash increases like U as

W -• e . Finally, for arbitrary y , but

-6.e , Lapin, Crookahanks and Hunter (1952)

gave - they have neglected a minus sign -

(5-49)

This result may be shown to be the dovnvash induced at a point due

to a dqably infinite distribution of vortices of strength

(5-50)
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This is the vortex distribution shed by an airfail in plunging

oscillatins as seen by saplication of (5-45) to this case,

using (5-32). The dovnv&Ah and vortex distributions in the vake

oscillate both in space and time far downstream. For Stu)n o 0

these results damp to zero "s %-b*. , and it in also

clear to see from these results why 1 Pw• o must be

excluded frnm consideration.

5.4 Reduction of the Bquations to the Steady Jet-Flap Theory

The steady Jet-flap theory is also includ~d in the

above formulation. It will be the limiting solution of the equations

for --p in the transient case if., Now PI• •

For steady oscillations, it is the limiting solution as W 0

Formally, however, the steady eq•ations can be recovered simpl by

setting

and F'I•i3o.

Using (2-1) and (2-7), these reduce (2-69), (2-73), (2-78) and (2-79),

for examplep to the set

(5-52)



and

us'€ , * ÷I'l

(5-53)

vith either

txralc) W (C I ÷+U.o*.

or

(5-55),

The assumptioas (5-51) imply that • 4, much faster than

, therefore the circulation in the system Is no longer

zero., and equations (2-81) to (2-83) Man (2-85) to (2-48) axe not

valid. Likewise the lift and pitcbizwgmCaet coefficients are not

gi.ven by (3-38) and (3-39). The lift coefficient, using (5-5)

in (3-10), (3-11) and (3-13), and using (5-52) in the Integral over

becom

CL -CL. - o . t.J,~ m w

The pitching-Maoent coefficient In s•iw.ar fashion reduces fras

(3-29) to
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CM z CM. *Cd. -(J+&) CL

-Ix ~f[~ -]sduywi + CTII4 go) C

(5-57)
Inimi ing 11%) between (5-52) and (5-53), the single

equation treated by Spence in I and II

WfNIL)u WO r fl F1

(5-58)
with either

uric+) = Mote) +Uo'C

(5-59)

or

(5-60)

is found.

In I, Spence assumed in the Jet-deflection problem

(section 4.1 above) that
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Lwflj) 'U OT f[J-(jC5r]' '4tDri~- 2 [L174t~3 +f~'13

'lao (5-61)

where

C

(5-62)

The first tem vas introduced to satisfy (5-60)p the series being

regular at Z - C. Having substituted this expression into

(5-5B), the resulting equation vas approximately solved by a collocation

scheme, i.e., the first N coefficients, AP , were found

by satisfying the equation exactly at N points. This approximation

converged rapidly, and detailed results for Nz 9 were found.

Spence also solved, in I, the incidence problem (Section 4.3 above

with assumptions (5-51)) in the same fashion, having assumed

(5-63)

Finally, Spence (195B) solved the jet-aupiented-flap problem

(Section 4.4 above with assumptions (5-51)) by collocation, where

(•)
LI Y4



117

Later, in 1z, Spence solved (5-58) to (5-60) nalytially.,

in the jet-deflection and incidence problems, for I,&-I
there

C -

(5-65)

This was done by transforming the downwvah distribution by

W1,.) ).tUoro(h 4  (k,) + u10

(5-66)

A detailed discussion of this transformation and its implications

vili be made in Section 6.1 for the full equations of the unsteady

problem. It suffices here to say that substitution of (5-66) into

(5-5B), with iJfo ht) given by (4-29) 6nder the assumptions

(5-51)), led to an iterative expansion of -Pr 1g) and ý A

of the forms

(5-67)

and

4 ~ ~ ~ ~ le I%' +e Op'&) a),I

(5-6B)
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vhere in : al.er's constant. uqmations for the fumct'lons

tie tie)and 1

Vere found 'to be

L ~ o %f-

(5-69)

fi) Q= J (5-70)

L 414 2o''
4p.Io) .0oJ

(5-71)

r.,o =o,I

(5-72)

vhere

(5-73)
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These eqiuations vere then solved by a Mellin-Traasfozm procedure,

a technique to be discussed in Section 6.2. The lift coefficients

found from this solution agreed very vell vith the numerical

solution of I, even up to I



CHAPTER 6 - "BOuNMJm-LAmYU" NoTuRE OF THE PRoNmd: TaNsPOmITIC
OF ME MQUATIMS TO "BOUNDA-LAYMR"COORfIATES

There are many problems in applied mechanics which may

be typified as "boundary-layer" problems. The name arises from

the mathematical similarity of these problems to Prandtl's (1904)

"grenzschicht," or, as it has been translated, "boundary-layer,"

in the flow of viscous fluids around bodies. Properties and

examples of "boundary-layer" problems have been discussed by

Carrier (1953), Friedrichs (1955), and others.

Carrier (1953) states three requisite criteria for

consideration of a problem as of "boundarylayer" type. First,

the coefficient of the highest-order derivative appearing in the

equations of the problem should be very small compared to 0(0)

Second, the other important terms in the equations should have

coefficients of 0(j) . Finally, the dumain of the problem

in the coordinate system chosen must be characterized by lengths

of 0(11

Spence first realized in II that the equations for a

jet-flapped airofil in steady motion were of "boundary-layer" type,

provided the jet momentum coefficient, Cr , was sufficiently

small. In most practical applications proposed for the jet-flap

the required C, are within the limits of the restriction.

Spence then made the transformation to "boundary-layer" coordinates -

equation (5-66) of Section 5.4 - and solved the steady problem within

that framework. For the unsteady problem, Spence made a similar

120



121

approach in III. It is important to discuss the unsteady problem

in detail with respect to Carrier's criteria in order to determine

the validity of this approach.

First, the highest-order derivative appearing in the

problem is always on the right-hand side of the particular dynamic

interaction equation, (2-69)-(2-72), used. This derivative is

multiplied by 5, (-65), so if %*(I) the

highest-order derivative is eGO) . As mentioned in Section 2.7

this is the only explicit appearance of A in the equations

of the problem, hence Carrier's second criterion is also met.

Considering the problem in the form of the single equation

in VIM or A40.14-) , (2-90)-(2-93), these criteria

are again seen to be met. Therefoxe these two criteria apply in

the unsteady problem exactly as in the steady one.

The characteristic-length considerations of the domain in

the unsteady problem are somewhat different from those of the steady

one. In the steady problem, Spence's numerical solution in I

clearly indicated that the downwash and vortex distributions die

off rapidly within a few chord lengths behind the airfoil. Thus

the chord length, C , is a significant characteristic length.

In the discussion of the classical unsteady transient solutions

in Section 5.2, however, discontinuities in the dovnwash

distributions and the associated singularities in the shed vortex

distributions were ..oted. In particular, U'.4 and UOL(L - Xj'X

are significant lengths for airfoil motion and gust penetration,

respectively, in addition to the airfoil chord, C .

Similarly, equation (5-45) indicates that for steady oscillations
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the wave length, -2, of the shed vortex distribution

is an important length. Therefore, for times, , of

0(1) or maller in the transient case, or for frequencies,

C , of 0(I) or larger in the oscillating case,
55lrue

the airfoil chord, . , is again a sufficient characteristic

length since uLj and 0-•-.- o
WMC

are of the same order as C Furthermore, (2-100) and (2-102) show

that the downwash and vortex distributions die off at infinity even

more rapidly than for the steady case, for X, Ue- . For

times so large, or frequencies so small, that ULt , UO(1- )

and !WU are much greater than C , a "boundary-

layer" based on C alone is inadequate, since important effects

would be well outside the layer. Spence, in III, treated the

region near X : C +U46 as of primary importance for large

times in the transient case, along with the region near the trailing

edge.

Realizing the time or frequency limitations just discussed,

the appropriate transformation of the coordinates for small /IL

is, folloving III,

(6-1)

(6-2)

and

(6-3)
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The leading edSe, %no , transforms to 11!

so for vanishing , , the airfoil becoms semi-infinite in

length. In conjunction with the coordinate transformation, it is

convenient to follov Spence's procedure of II and III and transform

the dependent variables representing the jet by

(6-4)

(•. 5)

(6-6)

and

(6-7)

The time dependence transforms by

F1.): •' .(6-8)

Determination of the non-dimensional constant A , and the

function BIK,b) will be discussed after transformation

of the equations.

The equations relating dovnwash and jet ordinate, (2-1),

and potential difference and vortex distribution, (2-7), transform to
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Wl, lie) .0- 4 4 le 0We

(6-.9)

and

ale)

(6-10)

Trnasforming the various fores of the equations of the Jet,

main-:stream dynamic interaction, (2-69) to (2-72), gives

__)+ 17, )e

(6-il)

(6-12)~~~~~ -TV-"•, 7 ,:

_ _ _ _ _~ A/L ' t l e -- 0iC .

,(•.•)

(6-13)

and



125

Z9~ JwAe) 0 Is lie)4

Osc )ed 0,0
(6- 14)

provided

-~ 10

(6-15)

The two forms of the downuash equation,, (2-73) and (2-85),

transform to

+ 1-II . k!A
0

(6- 16)

and
0O

w__ + 0~c &~i lwe4.~ - BI0) oV WA -,"

(6- 17)

The various forms of the trailing-edge boundary conditions,

(2-76) to (2-8o), become

(6- 18)

A A (6-19)
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(6-20)

and

(6-21)

while the Wagner integral condition, (2-82), becomes

(6-22)

where

(6-23)

The lift coefficient, (3-1 5), and the pitching-mament

coefficient, (3-35), becane, under this transformation,

(6-24)

and

(6-25)
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The function 8 (z, •) can be determined in each case

so that the factor (o)r'. (Z lei4Y" no longer appears in

the terms 1 -• h -A) and (Zf[r{,( - kVM+]

of (6-16) and (6-17). This gives a first-order partial differential

equation for w(',&) Which can be integrated subject to the

conditions that

y t 1-, L- - 0

and

or

which make the boundary conditions, (6-18) to (6-21), dependent

only upon the jet deflection, T hW) Te constant A

is chosen to simplify the form of the final equations.

The equations given above are exact. For small /AL

however, neglecting terms of O(/) enables the equations to be

greatly simplified. The chief simplifications are in the kernels

of the integrals of the downwash equations, (6-16) and (6-17), and,

as will be seen below for the particular problen of Chapter 4,

in the inhomogeneous terms on the right-hand sides of these

equations. These simplifications are equivalent, in the first

approximation, to neglecting ,g%! with respect to I , which

is valid only near % =0 , i.e., within a "boundary layer"

near the trailing edge, and to neglecting ./L' with respect to

valid only near J!= 0 , i.e., within a "boundary layer"

near the time origin. Higher approximations in
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A may be obtained in the unsteady problem by expanding

the solution in terms of ) as Spence did for the steady

problem in II, as mentioned in Section 5.4.

The equations of the various problems of Chapter 4 vill

now be written in the transformed coordinates.

Jet-Deflection Problem: The input to this problem is

the boundary condition on the jet slope at the trailing edge.

Therefore, choosing

A~t

(6-26)

and

(6-27)

the important boundary conditions (6-19), (6-20) or (6-21) become

(6-2B)

This is the problem formulated by Spence in III.

Plunging-Aifroil Problem: Here, A and

are found to be

A-
(6-29)

and
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edlhX)z hoc Fit).
(6-30)

The important terms are, then, in the downwash equations (6-16)

and (6-17),

(-31)

and

1 bSy4 -t l247"A dve) OAW's.00

(6-32)

in the boundary conditions, (6-18) to (6-21),

______ - v ~ * .

(6-33)

and in the Wagner integral, (6-22),

~4IT

(6-34)

The leading inhcsogeneous term in ) in the equations is

the right-hand side of the Wagner integral condition if the downwvah

equation, (6-16) ith (6-31), is used, or itX'41.if the

form of the dovnvwah equation incorporating the Wagner condition,
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(6-17) with (6-32), is used. The second term in (6-32), i.e.,

the leading term in (6-31), is proportional to 0 because it

is a higher power of . It would be necessary, then, to

carry the solution to the second approximation in / to account

completely for the airfoil-quasi-steady dowavash. The first

approximation vill give, however, the leading term in 'A. for

the lift and pitching-manent coefficients.

Pitching-Airfoil Problem: Here it is found that

AS

(6-35)

and

cCt. l•-ec) FtW-).
(6-36)

The important domvash terms are, from (6-16) and (6-17),

/4~~~~ (*3/4?L4[L~r

(6-37)

and
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U"OA +~[W" ')•""W

Frg),. 3 %:"\,w Uel +ý:Fo4 e~~) w
L 

V I~' I A A /4

(6-38)

the boundary conditions, (6-18) to (6-21), are

00

(6-39)

and the Vhgner integral condition, (6-22), is

(6-40)

The equations of the first approximation in M are thus

identical to those for the plunging airfoil, if e 3#14

The higher approxLmations in /ý satisfy different equations,

however, including the e a V/A case vhich is really

a second approximation. Here the analysis must be carried to the

third approx•mation in to account for all the airfoil-
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quasi-steady terms. The first approximation is now clearly restricted

to very small , since certain terms in (6-37) and (6-38)

are higher-order in , because Fit) is higher-order in

Blown-Flap Problem: As the downvash equations (4-50)

and (4-51) stand for this case, they are inconvenient for calculation;

however the arctangent may be expanded like

(6-141)

valid if • • i /1!/&. Provided is not too

small, use of this expansion is consistent with the neglect of

/ compared to I in the first approximation. Therefore

a first approximation should be obtainable in this manner. Furthermore,

when V•-T the equations agree with the pitching problem for

ezO a In this approxJmation,

A ~~e-za'~ ~g.Ii~cu ,A~1TY(6-42)
and

(6-43)

The downwash terms including OmiaA only are, from (6-16)

and (6-17),

J- WE VA ~ 17O/ 40

(6-414)
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and

(6-45)

the boundary conditions, (6-18) to (6-21), ame

blot e) - Cio~v 7 __I__

a,%: 1 1.. 1117~ , j._, =

(6-46)

and the Wagner integral condition, (6-22), becomes

CD

0 (6-47)

The equations for the first approximation in /4. are again

identical with those of the plunging and pitching airfoils. For

the first approximation alone, the expansion (6-41) is not used,

since the leading term in (6-45) comes from the airfoil-quasi-

steady circulation which is exact. Again the approximations involved

clearly limit the validity of the first approximation to very small

Sharp-Edged-Gust Problem. The downwash equations (4-67)

and (4-69) are also not in convenient form as they stand. An

expansion for mal• , and small X-c , may be made.

From such an expansion, it is found that
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A's Us(6-4~8)

and

(6-49)

The downwa•h teras including Oonl y are, frcm (6-16)

and (6-17),

u-A 10•-1 /

(6-50)

and

(6-51)

the boundary conditions are, (6-18)-(6-21),

(6-52)

and the Wagner integral aondition., (6-22), is

0 4.AI ). o( (6-53)
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The equations for the first approximation here are the same as for

the above three cases if their time dependence is explicitly made to

be The approximations have the same

implications as to their validity as above.

Frm consideration of the above five problems, it is

clear that in the first approximation for sma.l ýX and small

there are tvo fundamental unsteady jet-flap problems to be solved.

The first of these is the jet-deflection problem first

treated by Spence in III. The problem, in terms of the downvash,

Iy) , and the' Jet vortex distribution, I,'*) ,

for example, is governed, using (6-4) to (6-23) and dropping the

primes for convenience, by

(6-54)

and

vith either

(6-55r)

(6-56)
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or

(6- 5)

and

(6-59)

The problem can also be formulated in terms of the jet ordinate,

1loI'Itb) , and the potential difference, r11L

using the first approximations to (6-9) and (6-10),

(6-60)

and

(6-61)

and the appropriate equations from (6-11)-(6-23).

To the first approximation in /4 , then, the lift and

pitching-mument coefficients, (6-24) and (6-25), for the jet-deflection

problem become

4 0
(6-62)
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and

CM ( 3 (1 -3(J-. -C.)gr

(6-63)

It inmediately follows that, to this order, the center of presaure

is at the three-quarter-chord point, 0. '/- • For steady

flow Spence found numerically in I (and unpublished calculations

using the results of II confirm it) that the center of pressure,

to first order in 1 , is at the half-chord point. The

validity of the "boundary-layer" transformation for in2al1 time only

is pointed up here, since the center of pressure remaips at the

three-quarter chord point for all time in this approxination.

The second fundamental problem in the first approximation,

corresponding to the airfoil-motion problems and the sharp-edged

gust problem (if •'U) ) is, in terms of (V.,d)

and

+2. *. + -

(6-64)

and

(6-65)

or

(6-66)
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with either

(6-67)

or

D0

(6-6B)

and

6I

(6-69)

The lift and pitching-moent coefficients, (6-24) and (6-25), ae

do

6g.,AI 2& - pYA oi. de

(6-70)

and

CMW , iCIZ + Ai ~i

(6-71)

vher ,L ,~st and C m, NO are appropriate

to the particular problem.

The solutions of the two fundamental, smalj -/*,- t ,

problems are closely related. To explore this relationship fully

in the transient case, it is necessary to consider Laplace transform

taken on the time variable. Using the definition of the Laplace

transform, (5-17), and the initial conditions that the flow is

undisturbed prior to initiation of the transient motion, expressed by
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(6-72)

the Laplace-transformed equatiaos of the Jet-deflection and

airfoil-motion problemns, (6-54) to (6-59) and (6-64) to (6-69), aex

(P r

(6-T3)

(6-74)

(6-Tr5)

0( ;r d 
(6- T6)

and

+ Wk OPA) 0. -. __0

(6-TT)

(6-78)

(6-T9)
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(6-8o)

vhere and are the transformed vortex

distributioni and dovnvaoh for jet deflection; 9)
-ad those for airfoil motioi, and ()
the transform of

ikfferentiating (6-77) and (6-78) vith respect to 7

gives

(6-81)

and

I~ -W-0T

(6-82)
where the identity O - - f has been used.

By inspection of (6-81) and (6-82), the deflection solution of (6-73),

(6-74) and (6-76) suggests that the airfoil-motion solution may be

written as

(6-83)
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and

w

(6-814)

Integrating these with respect to % , and using the trailing-edge

boundary condition, (6-79), and the condition that the vortex

distribution vanishes at infinity downetreum gives

(6-85)

and

I -;p - pcp 'tpJ1_,l(;(4

(6-86)

vlere Afp) has been evaluated fron the 1fgner integral condition,

(6-80), upon integration by parts and use of (6-83). To ccmplete

the solution, the integral reqnired for the lift and pitching-mcaent

coefficients, (6-70) and (6-71), is, upon integration by parts,

(6-87)

Therefore, once the jet-deflection solution has been found, the

airfoil-motion solution follows.

The Laplace-transformed equations of the transient problems

also hold for the problems of steady-state oscillations, i.e., where

(6-88)
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and

(6-89)

provided the transform variable p is replaced by (ii)

and p by I . Thus the relations (6-85) to (6-87)

with the proper modifications, also hold for steady-state oscillations

in jet deflection and airfoil motion.



CHAPTER 7 - CRITIQUB OF AT~TEMPTED SaWTIII' IN "EOWRN.RY-LAXER" COMMUTES

7.1 Critique of Spence's Solution of the Jet-Deflection Problem for

Small Time.

Spence, in Section 3 of III, approximated to the equations

of the transient Jet-deflection problem for small time after a unit-

step-function input, and then obtained a "solution* of the simplified

equations. In the present section it will be shown that this

"solution" is incorrect, and that no valid solution of Spence's

approximate equations can be found.

The approximation of III is to neglect, for smal1 time,

the derivatives with respect to IL colpared to the derivatives

with respect to in the convective derivatives which appear

in the problem; i.e., it is assumed that

(7-1)

which is valid for

(7-2)

This holds, for small time, everywhere except so near the trailing

edge, J-=, that anOd -) ,n 1

Since the important boundary condition must be evaluated at the

trailing edge, it must be satisfied there in a sense consistent with

(7-2). The small-time solution, if found, clearly will be

143



non-uniforaly valid near the trailing edge. Very near the trailing

edge, on the other hand, if k,, .V(t and hence a 3& ,.(10

the equations reduce to those for the steady jet-deflection problem

treated in II (and discussed briefly above in Section 5.4). The

steady solution is valid near the trailing edge in a region growing

with time.

Instead of the downwash, Spence treated the jet ordinate,

%,4 , as the unknown function, along with 1%.

Cross-differentiation of the small-time approximation of the

appropriate equations, (6-13) and (6-54), and elimination of

gives the-equation in halb) aone,

denoting by subscripts ( ). and ( 2 partial

differentiation with respect to those variables,

0 (7-3)

The form of (7-3) implies that

(7-4)

i.e., that

(7-5)

which from (7-2) implies that

(76= )

(7-6)
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Instead of solving (7-3) for •iI,&) directly

in term of a similarity vwriable, T , as in

III, it is more instructive to retain - and t explicitly,

and to solve simultaneously for khIZAA and JM) while

retaining the similarity approach. Improper treatment of the

unit-step function appearing in the problem is one reason for the

incorrect result of 111.

if TIVrCr the equations-.(6-13). (6-55)p

(6-18), (6-19), (6-58) and (6-59) are, in this approximation,

(7-7)

and

(7-8)

with either

Sto+,A -o

(7-9)

and

(7-10)

or

•0

(7-'')
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and
do

0£

(7-12)

Folloing III, but in terms of ' and • instead

of j , define the 1e11in-transform pairs
C4iV

,�-�,�1s Js•
C4 0~ (7-13)

(7-14)

and

-6 (sht

(7-15)
C0

(7-16)

where C. is, as yet, an undetermined real constant.

Fram the form of (7-13) and (7-15), the assumption of

an IA similarity is evident. For- %aw&"s -a

the functions h /I,,+) and a /& can be evaluated in

series in increasing powers of ,/ • I I Iles) I1 (V/")
etc. by moving the line of integration, =C , to the left

past the singularities of ;4iS) and C IS) , respectively, in
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the p- plane. Because of (7-2), such series Vould be valid

in the limited range where ,i-e., where

(7-17)

In a similar manner for :0.~a j and

can be evaluated in series in increasing powers of N&/e'Is

~ , etc. by moving the line of

integration, C , to the right past the singularities

of H-is) and 6Is) ,•espectively, in the s- Plane.

These expansions are valid for

(7-18)
By successive differentiation of (7-13) with respect to t ,

; I ffssa)I1it) S is+,) Is.+,&) His) As,

and, provided Sl$+t)(S+-z) H(S) is regular in the infinite

strip, C-3 e- 0?$) e. , the line of integration can be moved

to the left to 5 -- C-3 . Writing and

dropping the bars then gives

. ~ s -_ •,,-cs'sY"")1.I ts-.)is-z) Is-) •41-,)Js
.(7- o9)

Substituting (7-15) into the integral operator in (7-8),

interchanging the order of integration, and using the integral

given in Section 3.1 of III (where the factor v0S was in-

advertently omitted), namely,
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(7-20)

gives

"C (7-21)

if I'l=
Next, differentiating (7-13) vith respect to b gives

CIt (7-22)

he:• is the Lamc delta funct4 on, (10). For AIS) c ,

tz4- j, by (7-17) and t is necessarily

greater than zero. Therefore the " 4 term may be neglected

since it is zero for ' For RLS) •7. , &SA=Y

by (7-18) and 4 is not necessarily greater than zero. Thus

the gjIb term must be considered. By the definition of 1 ,

however, it follow that if 4.70 , 4 o M - 0

Therefore the ýlj term my be neglected provided the first

pole of H Is) to the right of ,,S) =-C occurs for

12 I . This is clearly satisfied here since

(7), so

(7-23)
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Differentiating (7-15) vith respect to + gives

I'-m tovI -s)S

(7-214)

By the same arguments given for ,the S

term may be dropped if the first pole of GIS) to the right

of 9Si occurs for P- ± Assuming

this to be satisfied gives

C-Aw (7-25)

inally, differentiating (7-13) and (7-15) vith respect

to gives

cti•

If) S(7-26)

and

(7-27)

Substituting (7-19), (7-21), (7-23) and (7-25) into the

equations (7-7) and (7-8) gives

C47-0

I +I ) 6 (S -3(ss (si 0s)4

(7-28)
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and

(7-29)

These will be satisfied for arbitrary •] and * -provided

Gts) =(um~)e~ Pdr is) HI1)
(7-30)

From (7-13), it follows that the traillng-edge boundary

condition, (7-9), vill be satisfied if 0eand Is

is regular at $ 0 The input tailing-edge boundary

condition, (7-10), will be satisfied, using (7-26), if HiS)
has a simple pole with unit residue at S -I

By inspection of (7-16), the Wagner integral condition,

(7-12), vill be satisfied provided J 0

Sumoa-izing, (7-30) must be solved for 141s) and 61s)

subject to the conditions that

9 (S+etS4x.) H(S) is regular in the infinite strip,

(7-31)

G (S) is regular in the infinite strip, 0.4PUS)S ,

(7-32)

iLs) ia regular at S=O ,

(7-33)
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H1S- (S near Sw-I

(7-34)

and

(7-35)

The difference equation, (7-30), for 14I) will

be satisfied if

His) MIS) ''Is)

(7-36)

which implies that

G IS) V IrsMA4 S) YI~S)

(7-37)

where MIS) is some function of period three, and 44S)

is the function introduced and discussed by Spence in III.

The Spence function, ) , satisfies the

difference equation

qVS) *t,•ars Yg(s-s) 0 a

(7-3B)

and may be written as

(7-39)

where Ge (s) is the Lighthill function discussed by Spence

in II. This latter function satisfies
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&,(s) - tA#WSGo IS-,) = 0
(7-40)

and is represented by tke infinite product,

SI
- • )•t• (- f4)1 ,

(7-41)

i.e., (e{S) has poles of order h at S"-1

and at S= b-- , zeroes of order V at 5 n

and at 6'• .l-I ,and equals unity at S v O

and S Therefore, in the region of primary

interest, say - p•s. ) ' - j , J•S$ kas simple poles

at S= -It-3,-., .,•, . and simple zeroes at

S5, -/ , 2. 3

Using these properties, ) S) is seen

to be regular in - 3 e- PUS) . •- , except for the required

simple pole at S -I ,and a double pole at S':-2.

where only a simple pole is permitted. Also, dVars J•$JS)

is regular in Oe s)"i) W- I , but G( t 0 -

Therefore the function M is) must have a zero at S - 2.

to satisfy the regularity condition, (7-31), and a zero at 9 =

to satisfy the Vagner integral condition, (7-35).

To insure the existence of the Mallin transforms, (7-13)
and (7-15), it is necessary that (%/j/a) •"4/$) and

('oed, C7 IS) be integrable as j e p)

along Af Is) aC .In tkislimit (zP f

is bounded, as is Col 7TS .Using the appropriate
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form of Stirling's formula, tS-1)! ' 1' l9,tSI•' ' "

"[ W)] I9(s)0") eSpence found

in II and III that Y's) ." -1while

s" if .. e jt1 . Therefore,

C/)' 9 is)~(/5)"&t) l , which is

integrable.

The requirement that MIs) introduce zeroes at

S=-2 ) S, : , could be met in only two

ways. In the first of these it would be at the expense of introducing

corresponding poles into H IS) and &Ic) in violation

either of the regularity condition, (7-31), or of the regularity

condition, (7-32). The second would be at the expense of introducing

exponential factors making 141s) and G(s) fail to be

integrable along , IS) r- C Therefore, no function MI S)

with the desired properties can be found. Thus no solution of the

approximate set of equations, (7-7) to (7-12), can be found. DLscussion

of reasons for this will follow the details of Spence's "solution"

of III.

Spence obtained his "solution" in III by choosing MIS)

as

(7-4)

where the numerical factor is chosen to give the pole of HIS)

at s. -I unit residue. The zero required at S s - 2.

is introduced at the expense of a simple pole of MIS)



at s-j , , etc. Waile the simple pole at

s-5 •-does not violate the regularity of

09#00 ts) in 3 '-el- AM

(7-31), since 1s-y! s) has a simple zero

there, the condition on the regularity of i(s) in

0 - V.s) S , (7-32), is violated by the simple pole

of G [S) introduced at 2. by f4 Is)

Therefore, the neglect of the S () term in (7-24) was not

justified. Furthermore, of course, the Wagner integral condition,

(7-35), is violated; in fact the integral, (7-12), does not even

exist with the GIs) found here. On these two grounds, the

"solution" is clearly invalid.

Investigation of the properties of this invalid "solution"

helps indicate the failure of this attempt to approximate the full

equations for small time, and is thus worthwhile. Since the

behavior of H Is) and G( S) in the whole

S - plane, in particular their poles, is known from (7-36),

(7-37) and (7-42), series expansions for d.) and IS

nucy be found to be

L IMAP7-) -

(7-43)

and
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.33

(7-44)

(The third term in the small - 1X•qS expansion for

Ii lk) has the sign corrected fron equation (38) of

III.) Similarly, the first terms in the expansions for the important

derivatives and integrals are, frao (7-19), (7-21), (7-23),(7-24),

(7-26) and (7-27),

(7-45)

(7-46)
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"+ o 't

(7-47)

-0 1

-__.£,) 4 o[,'"w.";,, hii/•6), )'C"..d

(7-49)

(7-49)
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From (7-45) and (7-50) it i' seen that the approximate

equation, (7-8), is satisfied; from (7-47) and (7-8)'it is seen that

the approximate equation, (7-7), is not satisfied for large

, the extraneous S It) term in

(7-48) arising since it was incorrectly neglected in (T-24). The

boundary conditions at the trailing edge, (7-9) and (7-10 are

satisfied, considering (7-43) and (7-4C, however, the alternate

statement of these conditions in terms of the vortex distribution, (7-11),

is not satisfied, considering (7-50).

The lift coefficient was evaluated in III using (6-62),

which is

CLW) 41 '~LCe

(7-51)

It is important that in the derivation of this form of the lift

coefficient, satisfaction of the Wagner integral condition vas

required. Since this condition is violated here, (7-51) should

not have been used. FNrthermore, (7-14) shows that the integral in

(7-51) does not even exist. In III, the calculation was actually

carried out by taking /' inside the integral in (7-51) and

using (7-7), the ensuing integral existing only because, as seen

above, (7-7) is not satisfied by the "solution" of III.

As a final property of the "solution," the assumptions

that 2and - 6[h7.4)

will be checked. For X/ef's .1 , the expansions are

valid in the range e., (7-17). If



158

;= ot•") 1
and

(7-52)

vhere I'>I is same caistant, this inequality is met.

Furthermore, the inequality , , (7-6), is also

satisfied. Substituting (7-52) into (7-45), (7-46), (7-48) and (7-49)

indicates that

(7-53)

and

Therefore I 7- 11, + as assumed, but JW%,-A)

is of the same cder as 411 6t) , inconsistent vith the

assumption that t1 1,A) 1Y .h"z,) I In a similar

fashion for •/t'"'mi , the expansions are valid

for ,.> e (7-18), such that the inequalities (7-2)

and (7-6) are also satisfied. These are if

(7-55)
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where 14 is again sme constant. substituting (7-55)

into (7-45), (7-46), (7-48) and (7-49) indicates that

(7-56)

and

(7-57)
Therefore k, I•,L.A > as assumed. At 4,00

P , (%A)> 1 P~~axt ' as assumed; however the solution

should also be valid for 4, > 0 provided (T-6) is satisfied.,

but Jty-..) a .1y.,4• , and the assumption breaks down.

The question arises whether the unit-step-function time

dependence assumed here, being discontinuous at 4 = 0 , is too

singular to permit a solution. However, if the general input,

% r 0 is treated in

precisely the above fashion, again no solution can be found that

satisfies the regularity condition on S$1S+)1s£A.) (S)

satisfies the regularity condition on the new G Is) and

satisfies the Wagner integral condition.
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This approach to the solution of the mall-time Jet-deflection

problem clearly i inadequate. Consideration of the result, (7-53),

indicated that LA cae out to be of the same

order as 6t) , indicating that it should not have

been neglected. This does not seem surprising in retrospect, since

the important input to the problem is the boundary condition, (7-10),

on hI%,,) . Neglecting h% 1z& with

respect to k7t'o) in tke downvash equation, yet

requiring satisfaction of the boundary condition on A Li.A)

seems inconsistent. This suggest, as an alternative, formulation in

terms of the downwash, il!.$) , and the vortex distribution,

(1i) , still making the approximation Zk

for small time. The next section will deal with this formulation

and its subsequent failure to give a valid approximation to the

conplete set of equations for small time.

7.2 Further Critique of Small-Time Approach: Jet-Deflection and

Airfoil-Motion Problems.

Formulation in terms of the downwash on the Jet, I k .+

and the vortex distribution representing the Jet, 1%A P.,;

by equations (6-54) to (6-59) in the Jet-deflection problem, and in

the airfoil-motion problem by (6-64) to (6-69) eliminates the

contradiction of satisfying the input boundary condition or.

while neglecting it with respect to h /%A) in the

equations. The small-time approximation of neglecting

?.- derivatives with respect to t- derivatives,

wherever convective derivatives appear, will be retained. Therefore,

the various order-of-magnitude restrictions, (7-1), (7-2) and (7-4)

to (7-6) still hold.
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The approximate small-time Jet-deflection equations are

then, froa (6-54) to (6-59), denoting this approximation by a

subscript ( )a '

vI

(7- 5)

and

0

(7-59)

with
0

so

(7-60)

and

(7-61)

Equation (7-59) is exact, so only in (7-58) has it been necessary

to approximate for sma-l time.

To treat the problem, again define the Mellin-transfom pairs

~~~~~S 5/)m~'~%4
(7-62)

(7-63)
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and

• € j•(7-64)
~4jj

(7-65)

where C is, as yet, an undetermined real constant.

Successive differentiations of (7-62) with respect to

give o

*. ,I - >f'r.,.l L jjt,) Xs+e)ss,.) .tds

(7 66)

Substituting (7-64) into the integral operator of (7-59) and evaluating

it as in Section 7.1 gives

1.

o C-bW

(7-67)

if C/ - f . differentiating (7-64Y) twice with respect

to gives
COO.

+ f*~~~u isfs)+

'-I.

•- I•Xs s
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but, provided W~)in regular in the Infizi~te strip,.

C / .V(S)' C-+3 , the arguments of Section 7.1 Justify

neglect of Use 911) and terms, so

. . S~-3 ~ 0+ V~U zdj(- ) (st)As,
C-t- (7-68)

substitution of (7-62), (7-66), (7-67) and (7-63) into equations

(7-5B) and (7-59) gives
CON

Ij~S4 Y±U~ isw(5 +%)f2) ?()+(2. + + VI).6:(.3)34 s .0,

(7-69)

and

(7-70)

which will be satisfied if

(7-71)

From (7-67) it is seen that the trailing-edge boundary

condition, 7-6o), will be satisfied if ID 4 C 14 and

- has a double pole at the origin with

coefficient J . The Wegner integral condition., (7-61),

will be satisfied., using (7-65)., if -go~& -a 0

Sumariziro, (7-71) may be considered a difference

equation for A• s)which must be solved subject

to the conditions that
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.Q(S) is regular in the infinite strip, 0,L *is) 7

(7-72)

6.ts' ~ near s-o,

(7-73)

and

(7-74)

The difference equation, (7-71), virli be satisfied if

(7-75)

which implies that

' 7 ts) -- z l)-,)! 7 ,.,,, Nis) *IS)
1 c.(U(7-76)

where NIWO is again some function of period three, and hI(S)

is Spence's function, (7-39). For NiS) = I , the

conditions (7-72) and (7-73i are both satisfied. However, the

requirement, (7-74), to satisfy the Wagner integral condition is

not met. As in Section 7.1, if Nis) 3 1 , .'Is) - e-f•lS)
and is integrable as /91s)) --w o along RIS)- C

Introduction of a zero at S ý by a function #15)

of period three would either introduce a pole into the strip

04 VS) e in violation of the regularity condition

on s [s) , or would introduce an exponential factor
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making t~e *1Uin transform of 9 (S) fail to converge

as /ts) 1 --0of along I91S) . Therefore, a solution

satisfying all the conditions cannot be found. Evaluating the

integral, (7-61), for N(S) I I , using (7-65), (7-75),

(7-40) and (7-41) gives

(7-77)

clearly greater than zero. If the order-of-magnitude considerations

of the previous section are observed, the assumptions of neglecting

160and 04Awith respect to

is satisfied. Therefore, failure to

obtain a solution here results solely fron the inability to satisfy

the Wagner integral condition in this approximation.

The approximations 1671 (it, 0 and e Xi

may be considered as the first terms in an expansion of the full

equations, (6-54) to (6-59). This expansion may be written in terms

of the Mellin transforms as

C410J

al' d. I) (S) +j S;'J14) AtS) 4 aA") S,,

(7-78)

and

'-(7-79

(7-79)
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The second approximations,. and S

are the transforms of li IAand kTII4)

say, which satisfy

(7-80)

and

a

(7-81)

with

0
(7-82)

and

(7-83)

Operating on the Mellin transforms (7-78) and (7-79)

for ITand h17j as for a

and ,v the inhctnogeneous difference equation,

(7-84)
=ast be solved, vith O0 S , Its regular in

o0. e. , , (s) having no stronger

a singularity at the origin than a simple pole in order to satisfy
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the downash condition, (7-82), and 0 to satisfy

the Wagner integral condition. The solution, which again satisfies

everything but the Wagner integral condition), is

A9•/s if3',.-i•.d4) +4 w•

(7-85)

and the corresponding Evanuating the integral,

(7-83), using (7-78) and (7-85) gives

(7-86)

Therefore the second approximation in not only fails to correct

the error in the first approximation of failing to satisfy the Wagner

integral condition, but introduces further error.

To caoplete the picture, the small-time approximation will

be applied to the airfoil-motion problem, as defined by (6-64) to

(6-69) and the solution attempted. The time dependence here will be

assumed to be I AL.L ) *to avoid the difficulties with

the mlrac delta function as discussed in Section 5.2. With the same

small-time approximations of (7-1), (7-2) and (7-4) to (7-6), the

equations simplify to

*1'11, L) 0 -Y.,.-w

(7-87)

and

(7-88)
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with

(7-89)

and

(7-90)

The important input to the problem is the Wagner integral condition,

(7-90), as contrasted to the trailing-edge boundary condition,

(7-60), in the Jet-deflection problem.

In view of the relation of the airfoil-motion solution to

the jet-deflection solution as pointed out in Chapter 6, it is

impossible that an airfoil-motion solution of this type will be found.

However, it is instructive to carry through *he Mellin-transform

approach to see exactly how it fails.

Assuming a similarity solution in , the

Mellmn-transform pairs are

r-&fJ;5 (S41) to iL :s) Is

(7-91)

(7-92)

and COO

(7--
(7-93)
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0

(7-94)
Three d- derivatives of (7-93) give

c4io

(7-95)

Substitution of (7-91) into the integral operator in (7-88) and

evaluating it as usual yields

• -t-(7-96)

if I•Cd. I•• fferentiating (7-91) twice with respect to

t ,and drop-ping the j (&) a nd d4 terms by

the arguments of Section 7.1, provided COIS) is regular

in the infinite strip, C_ i-es). C4-3 , gives
COWe

- ± 1~) (!4) XL2) +Ads.j~s

(7-97)
The equations (7-87) and (7-88) are, upon substitution of

(7-93) and (7-95) to (7-97),

C40•

v&J -S3 S ~~ IsmiIsfQI)4s) + Ni-) t ,W) XtSIsL ~

C-im 
(7-98)

and
C415*

5 J&-IL W jws is=}4s

(7-99)
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which wll be satisfied if

le'is) 2 tow~s bo.'Is) bo13

(7-100)

The trailing-edge boundary condition, (7-89), vwii be

satisfied if 0 & C' and if is) has a singularity

at the origin no stronger than a simple pole. The Wagner integral

condition, (7-90), is satisfied, using (7-92), if I

In summary, the difference equation, (7-100), must be

solved for •a t$) subject to the conditions that

t)i s regular in the infinite strip, oE1Pis) x -

(7-101)

and

iTr

(7-102)

The difference equation, (7-100), wll be satisfied if

(~PIS) I(S

(7-103)

and

(7-104)
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vhere PIS) is a function of period three and IVIS) is

spence's function, (7-39). Vith PS)_) ,B

is regular in the strip., 0 Z_ ts)s . ,and 7

However, k ($) a a double pole at the origin, removal of

which by a suitable function, PIS) , would again either

introduce a pole into the strip 0 d- V(s)4 3 , violating

the regularity of is Cs) , or would add an exponential factor

making X'L ( S) fail to converge as I 91S)i --,Go along

[IS) = C Thus, as expected, a solution satisfying

all the conditions of the problem cannot be found. The double pole

at the origin of aIS) gives, in terms of 17.,&)

fro (7-93) and (7-104.)

(7-105)

vhich is not zero, but in fact singular, at = 0

Introduction of a continuous tpue dependence at s 0

by l) :/9 4 for both the jet-deflection and airfoil-

motion problems lead to the same failure as above to yield solutions.

Therefore, it is not a question of the motion being too singular

at 0

It has been seen that in both the jet-deflection and

airfoil-motion problems, no solution using the present small-time

approximation can be found. For the jet-deflection problem, the

input boundary condition at the trailing edge was satisfied, but

not the Wagner integral condition. On the other hand fbr the

airfoil-motion problem, the input through the Wagner integral

condition ws satisfied, but not the trailing-edge boundary condition.
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The condition left unsatisfied in each instance is an important

physical condition on the problem, and a "solution" which fails

to satisfy it is meaningless. Moreover, the approximation does not

change the order of the equations, since the highest Z- derivative,

(or if W~-) is eliminated,)

is retained, so there is no justification for failure to

satisfy one of the conditions. ýFailure to get a solution in this

small-time approximation, i.e., the failure to get a similarity

solution to the full equations for small time, must arise from the

inability of this approach to give a valid result near the trailing

edge. As discussed in the beginning of this section, any solution

foundwould have been non-uniformly valid in time near the trailing

edge. Furthermore, as expressed by (7-17), a similarity solution

f£r small would be limited in-validity, because of the

small-time approximation, to the range where 4 C es .

This restriction apparently prohibits satisfaction of the equations

at IL Q , and results in the failure of the present approach.

A recent private communication fran Dr. D. A. Spence indicates

that he has solved the small -/IA jet-deflection problem exactly,

using Laplace transforms on both the % and .6 variables. The

exact leading lift term for small time has been found. His results

also indicate that the solution near the trailing edge is not expressible

in terms of the Z/&/$ similarity. These results will be

reported shortly by Dr. Spence.
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7.3 High-Freuency Steady-State Oscillations; Jet Deflection and

Airfoil Motion Problem.

No similarity solution in Y/0s could be found

for small time in the previous sections, yet the sae approach for

high frequencies of steady-state oscillations appears to lead to an

J I similarity solution satisfying the equations and

all the conditions, still approximating by neglecting .Z-

derivatives with respect to I-derivatives. In Section 5.2

of III, Spence found high-frequency "solutions" to the jet-deflection

problem in terms of the jet ordinate and vortex strength. Although

these "solutions" do not, of course, encounter the step-function

difficulty, they do fail to satisfy the Wagner integral condition,

hence are incorrect.

The equations for the jet-deflection problem in

steady oscillations, with 90) t-0 , are, from (6-73) to

(6-76), using (6-88) and (6-89) and the remarks following them,

A4+2 ('z.P +s IT

(7-io6)

and

0
(7-107)

with

40

AJ

(7-108)
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and

(T-109)

In full generality, Meflin transforms may be defined by

A A'

V1b.. (7-1a10)S T SM d

(7-111)

and

G'-s ((-i) 4

0
(7-113)

Using the techniques of the preceding sections, the

various derivatives and integrals are
C.i. Ld

C:-i, o • (7-114)

and, provided izi$;P) is a regular function of 5

in the infinite strip, CZ WS) -C+3

(7-115)
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Ch W

•' (T- 116)

and

C-- ~S

-(T IL IT)

and) if I.'

7T7
(7-118)

Substituting these into the governing equations., (7-106)

and (7-107), gives

c~i.4" "•lfi)t1 (s43;•) - z (I•) 1s.2•)GJts+a;•) +sI,)"s,;

- l,)ts+,) . ts; d}j As 0 o

(7-119)
and

4Aj'~jiLK s.? -ta.WS G" ts;K~s~

(7-120)
which vill be satisfied, if

(7-121)
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The trailing-edge boundary condition, (7-108), is satisfied

2f and 6't;has a double pole

with coefficicnt, at S 30 The Wgner integral

condition, (7-109)., in satisfied if 0~( ~:

Bu~narizing, the difference equation, (7-121), must be

solved for G'(S'P) subject to the conditions that

is reGular in the infinite strip, 01-9S~s)-,

(7-122)

(7-123)

and

(7-1•4•)

Examination of (7-121) indicates that an approximation

scheme in , for large , may be made .by expanding

and [) andin terms of by

Kr s; 0 = ts-') Vjc1) i~**~s oQ~)
(7-125)

and

G sA ) [6: is ivy%6-T s)J

(7- 126)

This approximation is precisely the sam as that of the previous
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sections; i.e., it is assumed that (7-1) is, here,

(7-127)

The same limitations in the regions of validity of the solution hold

here, (7-2), (7-5), (7-4 (7-17) and (7-18), with 1/A replacing

. atison (7-1-21) -to (7-124) may thus be written

+ 01S-) G&' -('+3 6,P4 s1*Si"S) + "6'/,,s+36) ];

(7-12B)

with

G.E () +L +'~~ 0(0-"S) regular in 0 e-q(S'

(7-129)

Is) 1?J"6zS)iTS3) near S =O0

(7-130)

and

(7-131)

Equating like powers of ?4s then gives the iteration scheme

for successive approximations in
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The first approximtion requires solution of

K~(C) te, r &(S - (+

(T-132)

subject to the conditions that

G6 Cs is regular in the infinite strip, Od. AIS~d-

(7-133)

near

(T-134)

and

(7-135)

the second approxintion requires solution of

/gItIS)" s ztCS. - -,s +s) -2 6rIs+i)

(T-136)

subject to the conditions that

,2, t S) is regular in the infinite strip, 0h ftS)k

(7-137)

and

(T-138)
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The difference equation, (7-132), of the first approximation

is satisfied if

(7-139)

Furthermore, ae. the conditions, (7-133) to (7-135), are

satisfied, including the Wagner integral condition. Using the

results of Section 7. , (S-01)61(s) ."/9s)J P e + W'1.ll 191s0-40

along I) z- C . The complex 9 may be vritten

= jfl ., and since '-v e"V1f|•
as 1 ts~J- m. along .s•-C , i(s;•) - 194)"'' ed 'l .'4,
as J S(S1 --. e along PLtS) w C . Therefore, since the

Mellin transforms, (7-110) and (7-112), must be integrable along

PUS) z , for - e. I , it is necessary to restrict

I O I G• . This is a mild restriction for the case of

steady-state oscillations, eliminating only purely divergent motion.

In a like manner, the inhcuogeneous difference equation,

(7-136), of the second approximation is satisfied if

+ -

(7-140)

vhere the first term is the particular solution to the inhomogeneous

equation, (7-136), and the second tenr is the general solution of

the corresponding homogeneous equation. Both conditions, (7-137)

and (7-138), are satisfied and the Wellin transform is again integrable

if
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Higher approdmations GC 15) , etc. could also

be found, but are not treatedhere. Also, higher appro•• ations

in /A could be found following the technique of Spence in II

for the steady problem, but these, too, are omitted here.

The lift and pitching-manent coefficients can be evaluated,

using (6-62), (6-63), (7-113), (7-126), (7-139), (7-141o), (7-39)

and (7-40), giving

C~2 i'COf+ 4
(7r-C 3)

and

A

(7-142)

As derived in Capter 6, the solution for airfoil motion

is related to that for jet deflection by (6-85) to (6-87). Here,

in particular, using (7-113),(7-126), (7-139), (7-140), (7-39) and (7-40),

(7-143)

and

A* " ir0{• i A•.O'h rto "cVJ]J'A l/f2)SS, +'-%*"

(7-144)

vhile the important integral in the lift and pitching-mment

coefficients is

(7-145)
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These results check, of course, vith those found by a direct

Meltin-tranforam solution of the airfoil-motion problem.

For the plunging airfoil, from (6-70), (6-71), (4-23), (4-24),

(4-25) and (7-145),

(7-146)

and

(7-147)

The leading term in both lift and pitching-moment coefficients is

the apparent-mass contribution and is lowest-order in both

and /L . The next term is circulatory in nature and is the

leading jet effect. The last term, also circulatory, may be

identified as precisely the leading circulatory term for the

classical, U =0 , limit. That is, the leading jet-induced

term, proportional to , is lower-order than the leading

classical circulatory term, which is recovered, however, in this

approximate solution.

With like interpretation, the lift and pitching-moment

coefficients for the pitching and blown-flap airfoils may be written.

For the pitching airfoil they are

(7-148)

and
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(7-1J49)

for the blovn-flayp airfoil,

(7-150)

and

L (g-1a) X< ,;hV4. VJ - - xhK-z wt.Y.- .. I-1tf % XI-CO X)]

4

It appears then., that in the sense that Wii) L'

mand # are neglected in (7-106), a solution

of the problem of steady-state oscillations can be found satisfying

all the equations of the problem, including both the trailing-edge

boundary condition and the Wagner integral condition. Whereas
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there was failure to solve the transient problem for mall time,

solution to the oscillating problem has been found. The restriction,

i q , imposed to insure existence of the Hahn

transforms, is interesting in view of the Laplace-transform approach

to the transient problem. As mentioned above, replacement of IM )

by a real p , and multiplication of the result by (p)

should give the Laplace transform of the transient solution. Such

an identification is excluded by the restriction I I -I &, Ij

This inability to extend the solutions to real p , hence failure

to get a Laplace-transform solution of the transient problem, is

consistent with the failure in Section 7.2 to get a similarity

solution in . /l s , for small time. However, these

circumstances lead to the remarkable conclusion that, contrary

to the usual experience in such problems (in particular the

classical unsteady solution discussed in Sections 5.2 and 5.3), the

transient response for mall time is not related through its Laplace

transform to the high-frequency response to the corresponding

problem of stead*-state oscillations. Finally, 'it should be

remarked that Spence's latest approach to the transient problem,

if correct, must be made to tie in consistently with the above

solution for steady oscillations. It must be concluded, then,

that the solutions given in this section for steady oscillations

must be regarded as tentative, subject to further study, both of

them and Spence's new results.



CHAPTER 8 - OMCLsMMs

By extension of the existing steady, jet-flapped, thin-

airfoil and classical, unsteady, thin-airfoil theories, a model

for unsteady motions of jet-flapped thin airfoils has been

formulated in the first four chapters. Study of these existing

theories has clarified certain features of the unsteady jet-flapped-

airfoil behavior. Such studies have suggested the feasibility of a

"boundary-layer" transformation, which amplifies the region near

the trailing edge of the airfoil for small jet-momentum strengths,

IA , and for either small times after initiation of

transient motions or for high-frequency steady-state oscillations.

The invalidity of the small-time "solution" found by

Spence in III for the jet-deflection problem has been pointed

out and discussed in detail. No correct solutions using Spcncc'a

approach could be found, however. Likewise Spence's error in III

for the high-frequency response to steady-state oscillations

in jet deflection has been pointed out. For this problem a

tentative solution, as yet not fully understood, has been put

forth. It satisfies the equations and all conditions of the

problem in an apparently consistent sense, and can be extended

to the corresponding airfoil-motion problem.

Spence's long-time solution in III, i.e., the approach

to the steady solution after a transient jet deflection or airfoil

184
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motion, is the only established result reWaning for this problem.

Although not discussed in this report, this solution is found from

the full equations by examining the neighborhood 7 =- + U6i

and showing that in the vicinity of this point for very large times

there is concentrated an amount of circulation equal in magnitude

but opposite in sign to the total circulation of airfoil plus jet

in the steady solutions of I and II. Considering the interaction

of this "starting circulation" and the "steady-flow circulation,"

the lift coefficient for approach to the steady solution was found

to be

CLA), ;1 CLAD +

(8-1)

where yLL(a)/ is the lift-curve slope in the steady,

incidence, jet-flap solution, say equation (65) of ii, and 4.

is the physical time.

The surface has only been scratched in finding the lift

and pitching-manent responses to unsteady motions of jet-flapped

airfoils. The approach through the "boundary-layer" transformation,

if solved would only give results in a limited range of /U and

or W . Nevertheless these equations have the strength of

their relative simplicity and give sane hope for further analytic

attempts to solve them. It remains, as mentioned in the previous

chapter, to investigate fully Spence's new, as yet unpublished,

solution for the transient case, as well as the tentative high-

frequency solutions for steady oscillations given in that chapter.
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With the resolution and understanding of these limiting

results, digital computation of the full equations would probably

be necessary to give solutions for all intermediate times between

small and large, and for all frequencies up to the high ones. As

briefly discussed in Section 5.4, Spence in I obtained rapid

convergence to the steady-state solution using a numerical collocation

scheme, since the functions being sought had a monotonic behavior

in Ak . A collocation scheme should also be applicable in the

unsteady problems, although convergence would by no means be as rapid,

due to the much more complicated behavior, in 4Z and + or W

of the unsteady solution. Furthermore, the collocation points would

have to be chosen in a fashion to adequately handle the important

effects in the inmediate vicinity of the trailing edge, CwC. ,

and those in the vicinity of 'X -C or "41 ,

say.

Finally, and probably most important, is the need for

definitive experiments to test the validity of the model formulated

here, and any solutions which might be found. Only in this way can

the ultimate value of this theory be established.

It is strongly felt that further research along the above

lines is worthwhile, not only to obtain results of use to the

design engineer, but also to understand the interesting mathematical

and physical points raised by the present model and its equations.
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APEUKMX A

Evaluation of Certain Integrals

Although many of the integrals to be evaluated in this

Appendix may be found elsefhere, it is convenient to treat them

in general and collect their results here for the particula

applications required in the text.

The first type of integral to be treated is defined by

Id. pa ) B f INS-1 I" d

(A- 1)

for 0, vith integer values of n

such that 'V - I . The superscript, 0 , refers to

this type of integral and the subscript, V , to the exponent

of . The integral is readily evaluated by =king the

transformation,

C-

24 2 .csi,'e'oedoJ

(A-2)

which gives

JIG 2C F%+ I We
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Using the trigonometric identity given by extension of equation 404

of DWiht (1097), newly

(A-4)

(A-3) mma be imediately integrated to give

(A-5)

A particular case of this is

(A-6)

The examples of (A-5) and (A-6) vbIch are required in the text are

(A-7)

(A-8)

(A-9)
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(A- 10)

and

(A-11)

The second type of integral is

S(A -la )

vhere 06ot-l C vith integer values of 1 , such that

V >ý- 0 . Although this is readily evaLuable

using the transformation (A-2), it may be related directly to the

previous inerl .T 140F)Wt the identity

(A-13)

it is seen froa (A-i) that

(A-i )

A particular case is

, .'~ , (•*)Sm (2;1( 1
(A- 15•)
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The required examples ame

I,'(o, z1 - • S"i( "- - .e. _US __.______

(A-16)

(A-i1)

Ust

(A-19)

(A-19)

(A-20)

16
(A-21)

I/Ser 314I )r

(A-22)

and

T (o, -) -

(A-23)
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The third type of integral is

(A-24)

vhere O fA4 cand h is aninteger such

that V Z - I The integral exists for O0 %d.OL

P.A and -X7G , and in the

seuse of the Cauchy Principal:. Value for OL 4% e.
Substitution of (A-2) makes it

(A- 25)

The integrand msay be rewritten, using the identity

(A-26)

and the dfinition of ( (A-) ,as

(A-27)

The remaining integral may be evaluated using equation 43 6- 7 of

Dwight (1947), as
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(A-28)

(A-29)

The final result is, in general,

.•T'I•'••) "(A-30)

(A-•31)

A particular case is
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r to, C.•) (A-32)

(A-33)

The particular integrals necessary to the text are

[wi -t a t.41e

(A-34i)

(A-35)

., • OA •o -C

(A-36)

(A-37)



(0 (A-38)IoC, ,)

(A-39)

o. (A-4o)

.i•-*~ *• •rio • 9L5tv,1t4L

(A-41)

and

to,1 (A-42)

(A-143)

Tefinial type of integral is

(A-44J)
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where O •firt9 -C. and V1 is an Intger suc tkat

V1O aý0A for V c, ,'), it exists

for 0 A. , % a%,C and r-

and in the sense of the CLu,.hy Principal Value for Ot x IL e.

Use of the identity, (A-13'1, reduces it to

(A-45)

A particular case of interest is

1L+1

(A-46)

The integrals required in the text are

(A-49)
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(A- 50)
-I+

(A- 51)

~ (A-52)

(A-53)

and

+ ,.• + .) 'h ,Cd .

(k,-55)


